Secret Sharing
Suppose d have a secret that el want to share across n parties such that any t subset can recover my secret, but any $\leq t-1$ subset learn nothing about my secret.
Example:

Definition: A (t, n)-secret sharing scheme over a message space M and share space S is a tuple of eff algs:

Share: $M \rightarrow S^{n}$
Reconstruct : $S^{t} \rightarrow M$
with the following properties:

Correctness: Any t shares can be used to reconstruct m.

$$
\begin{gathered}
\forall m \in M,\left(s_{1}, \ldots, s_{n}\right) \leftarrow \text { Share }(m) \\
\forall S \subseteq\left\{s_{1}, \ldots, s_{n}\right\} \text { where }|s|=t \\
\operatorname{Reconstruct}(s)=m
\end{gathered}
$$

Security: Need at least t shores to learn anything about m.

$$
\forall m_{0}, m, \in M, \forall I \leq\{1, \ldots, n\} \text { where }|I|<t:
$$

Denote $\left(s_{1}, \ldots, s_{n}\right) \leftarrow \operatorname{Share}\left(m_{0}\right)$
$\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right) \leftarrow \operatorname{share}\left(m_{1}\right)$

$$
\left\{S_{i} \mid i \in I\right\} \approx \underset{\sim}{\approx}\left\{S_{i}^{\prime} \mid i \in I\right\}
$$

Today, these dist will be identical.
Construction of (n, n)-secret sharing: \quad can actually just be an abelian
For message space $M=\mathbb{F}$ and $S=\mathbb{F}^{K}$, group
Share (m) : Sample $r_{1}, \ldots, r_{n-1} \& \mathbb{F}$. Define $r_{n}:=m-\sum_{i=1}^{n-1} r_{i}$.

$$
\text { Output }\left(r_{1}, \ldots, r_{n}\right)
$$

Reconstruct $\left(r_{1}, \ldots, r_{n}\right)$: Output $m^{\prime}:=\sum_{i=1}^{n} r_{i}$.
Correctness: $\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n-1} r_{i}+\left(m-\sum_{i=1}^{n-1} r_{i}\right)=m$
Security: $\forall m_{0}, m_{1} \in M$, the $(n-1)$ share distributions ore actually identical! * See if you can convince yourselves

Shamir Secret Sharing: (t, n)-secret sharing scheme
For $M=\mathbb{F}, S=\mathbb{F}$ s.t. $|\mathbb{F}|>n$.
Intuition: a polynomial of degree $t-1$ can be uniquely determined by t points. For example, a live by two points, a parabola by 3 .
Linear Algebra Viewpoint:
Given a point $x \in \mathbb{F}$ and a poly $f(X)=c_{0}+c_{1} X+c_{2} X^{2}+\ldots+c_{t-1} X^{t-1}$. We can view the evaluation $f(x)$ as an inner product

$$
f(x)=\left\langle\left(1, x, x^{2}, \ldots, x^{t-1}\right),\left(c_{0}, \ldots, c_{t-1}\right)\right\rangle
$$

Thus, given t distinct points, we can describe a linear system.

$$
\underbrace{\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{t-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{t-1} \\
& & & \ddots & \\
1 & x_{t-1} & x_{t-1}^{2} & \ldots & x_{t-1}^{t-1}
\end{array}\right]}_{\text {Vandermonde Matrix }} \underbrace{\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{t-1}
\end{array}\right]}_{\text {Coeffs }}=\overbrace{\text { evals }}^{\left[\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{t-1}\right)
\end{array}\right]}
$$

Interpolating $f(X)$ is equivalent to solving the Linear system above for the coeffs. For distinct X_{0}, \ldots, X_{t-1}, the Vandermonde matrix is invertible; thus, interpolating requires a matrix maul V^{-1}. evals ${ }^{\top}$.
Proof Sketch:
The cols linearly independent:

$$
C_{0}\left(\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right)+C_{1}\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{t-1}
\end{array}\right)+\ldots+C_{t-1}\left(\begin{array}{c}
x_{0}^{t-1} \\
x_{1}^{t-1} \\
\vdots \\
x_{t-1}^{t-1}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Implies x_{0}, \ldots, x_{t-1} are roots of a poly of deg $\leq t-1$, but a poly can have at most $t-1$ roots. Thus, $C_{0}, \ldots, c_{t-1}=0$.

Construction
Share (m) : Sample random coeffs $C_{1}, \ldots, C_{t-1} \stackrel{\downarrow}{\leftarrow}$.

- Define $f(x):=m+\sum_{i<t} c_{i} x^{i}$.
- Output n points on $f:\left(s_{i}:=(i, f(i)) \forall i \in[1, n]\right)$

Reconstruct $\left(\left(x_{i}, y_{i}\right) \forall i \in[t]\right)$:

- Interpolate the unique poly f of $\operatorname{deg} t-1$ defined by those t points.
- Output f(0)

Correctness: Follows from the uniqueness of interpolation (t points define a poly of $\operatorname{deg} \leq t-1$)
Security: Consider an arbitrary message $m \in \mathbb{F}$ and $I \subseteq[1, n]$ s.t. $|I|=t-1$. Define $\left\{X_{i} \mid \forall i \in[1, t-1]\right\}:=I$. Consider arbitrary elts $y_{1}, \ldots, y_{t-1} \in \mathbb{F}$. What's the probability the shares for this subset are $\left(x_{1}, y_{1}\right), \ldots,\left(x_{t-1}, y_{t-1}\right)$?

$$
\begin{aligned}
& \operatorname{Pr}\left[V\left(0, x_{1}, \ldots, x_{t-1}\right)\left[\begin{array}{c}
m \\
c_{1} \\
\vdots \\
c_{t}
\end{array}\right]=\left[\begin{array}{c}
m \\
y_{1} \\
\vdots \\
y_{t-1}
\end{array}\right]\right] \\
= & \operatorname{Pr}\left[\left[\begin{array}{c}
m \\
c_{1} \\
\vdots \\
c_{t-1}
\end{array}\right]=V^{-1}(\ldots)\left[\begin{array}{c}
m \\
y_{1} \\
\vdots \\
y_{t-1}
\end{array}\right]\right]=\frac{1}{|\mathbb{F}|^{t-1}}<\begin{array}{c}
\text { independent } \\
\text { of } \\
m
\end{array}
\end{aligned}
$$

Another way to interpret, for any choice of $(t-1)$ shares and any message m, there exist a unique poly f of $\operatorname{deg} t-1$ s.t.

$$
\forall i \in[1, t-1], f\left(x_{i}\right)=y_{i} \text { and } f(0)=m
$$

Thus, any $(t-1)$ shoes can be consistent with the sharing of any message m.

Now, we will describe a protocal for $2-P C$ (two-porty MPC) for functions expressible by Arithmetic Circuits.
We will show an elegant construction from secret sharing that targets Semihonest Security, where we restrict corrupt parties to
follow the protocol specification exactly, but try to extract info about the honest parties' input.

* Though there is an elegant way to make the protocol maticiasly secure by using "info-therectic macs"

2-Party Computation for Arithmetic Circuits
Alice $\left(X_{A}\right)$
$\operatorname{Bob}\left(X_{B}\right)$
Share $\left[x_{A}\right]_{0},\left[x_{A}\right]_{1} \leftarrow$ Share $\left(x_{A}\right) \quad\left[x_{B}\right]_{0},\left[x_{B}\right]_{1} \& \operatorname{share}\left(x_{B}\right)$ Inputs

Computation on Secret
shares

Opening final output shares

Reconstruct

$$
[\text { Output }]_{0}+[\text { [output }]_{1}=\text { Output }
$$

Protocol
Idea: Derive shares to intermediate wires incrementally

1. Both parties secret share their input elts with each other.
2. For each addition gate in the circuit with inputs $[x],[y]$, the parties jointly derive shaves to $[x+y]$ (the output shave)
3. For each multiplication gate with pin uts $[x],[y]$ parties jointly derive shares to $[X \cdot Y]$
4. Once share of circuit outputs is derived, each party sends their share of the output

Computation on Secret Shares
Here we assume the $(2,2)$ scheme above $[x]_{0}=r \mathcal{N},[x]_{1}=x-r$.

Operations Adding Shares: $\left[X_{A}\right]_{0}+\left[X_{B}\right]_{0}=\left[X_{A}+X_{B}\right]_{0}$

$$
\begin{gathered}
{\left[X_{A}\right]_{1}+\left[X_{B}\right]_{1}=\left[X_{A}+X_{B}\right]_{1}} \\
{\left[X_{A}+X_{B}\right]_{0}+\left[X_{A}+X_{B}\right]_{1}=\left[X_{A}\right]_{0}+\left[X_{A}\right]_{1}+\left[X_{B}\right]_{0}+\left[X_{B}\right]_{1}=X_{A}+X_{B}}
\end{gathered}
$$

Adding a constant C :

$$
\frac{C}{2}+\left[x_{B}\right]=\left[C+x_{B}\right]
$$

Multipling by a constant $C: C\left[X_{B}\right]=\left[C X_{B}\right]$

Multipling Shares: Will require setup + interaction
Beaver's Trick 91
Suppose parties already have secret shares of a random product:
$[a],[b],[c]$ where $a, b \leftarrow \mathbb{F}$ and $c=a b$ beaver triple
To multiply shares $[x]$ and $[y]: \quad \mathcal{L h a r e s}$

1. Locally compute shares to $[x-a]$ and $[y-b]$.
2. Send shares to jointly reconstruct $\varepsilon=x-a$ and $\delta=y-b$ one time pad encryptions of x and y
3. Locally compute shares $[z]=[c]+\delta[x]+\varepsilon[y]-\frac{\varepsilon \delta}{2}$

Correctness

$$
\begin{aligned}
& \frac{\text { cetness }}{[z]_{0}}+[z]_{1}= {[c]_{0}+\delta[x]_{0}+\varepsilon[y]_{0}-\frac{\varepsilon \delta}{2} } \\
& {[c]_{1}+\delta[x]_{1}+\varepsilon[y]_{1}-\frac{\varepsilon \delta}{2} } \\
& c+\delta x+\varepsilon y-\varepsilon \delta \\
& a b+(y-b) x+(x-a) y-(x-a)(y-b) \\
& 11 \\
& a b+y x-b x+2 x-a y-x y+a y+b x-a p \\
& 11 \\
& x y
\end{aligned}
$$

Security: Information-Theoretic!
How do the parties obtain beaver triples?
Requires public-key cryptography or a $\left.\begin{array}{l}4 \text { Oblivious Transfer } \\ \rightarrow \text { Garbled Circuits }\end{array}\right\}$ In How!
\rightarrow Somewhat homomorphic Enc
Need to generate one beaver triple per mull gate (cannot reuse triples; O/W break OTP)

2-PC in the Preprocessing Model
Preprocessing/offline stage: Parties generate M beaver triples where M is an upper bound on multiplication gates. Note that this process is expensive, but independent of the future circuit / partly input.

- Save these beaver triples for use in the future. Maybe waiting for data to be available or a computation to be agreed on.

Online stage: No expensive PK operations, but requives communication linear in the \# of mult gates/inputs

- parties secret share inputs
- parties perform the Z-PC protocol using pregeneated triples (as long as \#mult gates <M)
- parties reconstract output

