Differential Privacy
Previously in CS 355: MPC
- Garbled Circuits: 2PC for boolean circuits
- Beaver triples: NPC for arithmetic circuits

MPC leaks the output. What if we don't want that?

\[
\{ \text{Sim}_A(f(x), y) \} \approx \{ \text{View}_A(\text{M}, b) \}
\]

Today: Differential Privacy

- Definition & Implications
- Construction from sensitivity
- Relation to cryptographic security

The output is "hidden", but at what cost?

The workflow:

Database \(\xrightarrow{\text{Mechnism}} \) \(\text{Output} \) \(\xrightarrow{} \) Analyst

might contain Alice's data

DP privacy principal

- Analyst learns nothing more than the output that it wouldn't have learned w/o Alice in the DB.

- \(\text{AIR-leak} \) \(\approx \text{Blind} \) \(\rightarrow \) don't need learning population level facts
- \(\text{Diagnostic leak:} \) might reverse Alice that participating in the study/system may harm her
- \(\rightarrow \) for Science

- Key tool: noisy outputs!

Applications
- Public data & statistics (e.g., US Census 2020)
- Ad attribution (as discussed last week)

Google

\[
\begin{array}{c|c|c}
\text{User} & \text{Ad} & \text{Click} \\
\hline
\text{Alice} & \text{Any} & \text{Blender} \\
\end{array}
\]

\(\rightarrow \) \(\text{Count per ad} \)

- Private ML training
 \(\rightarrow \) Ex: iOS Quick Type

Defining Differential Privacy

Data: Two databases \(D, D' \in \mathbb{X}^n \) are adjacent if they differ in only 1 position. So, \(\| D - D' \|_1 = 1 \). For adjacent \(D, D' \), we write \(D \sim D' \)

Defn: A mechanism (randomized algo) \(M : X^n \times A \rightarrow Y \) is \(\varepsilon \)-DP if for all \(S \subseteq \text{Range}(M) \), for all \(x \in X^n \), for all \(D \sim D' \)

\[
\Pr[M(D, a) \in S] \leq e^\varepsilon \Pr[M(D', a) \in S]
\]

Note: \(\Pr[M(D, a) \in S] \approx \Pr[M(D', a) \in S] \) and \(\varepsilon \) is positive. Why?

Q: Are all mechanisms DP?
A: No!

\[\]
Achieving DP w/ the Laplace Mechanism

Let a query q map $X \rightarrow \IR$.

Example:
- Alice: 61
- Bob: 0
- Charlie: 1

We'll add noise to obscure any single row.

Defn: For a query q, the **sensitivity** Δq of q is

$$\Delta q = \max_{D \sim D'} |q(D) - q(D')|$$

Q: Sensitivity of a filter-count? 1!

Q: Sensitivity of a maximum? ∞!

Defn: The real-valued centered Laplace distribution for parameter θ, $\text{Lap}(\theta)$, has density:

$$f_{\text{Lap}}(z) = \frac{1}{2\theta} e^{-\frac{|z|}{\theta}}$$

Construction: Laplace Mechanism $M_{L}(0, \theta)$

- **Given:** query q of sensitivity Δq.
- **1.** Compute $q(D)$.
- **2.** Sample $n \sim \text{Lap}(\frac{\Delta q}{\theta})$.
- **3.** Output $q(D) + n$.

Claim: M_{L} is ϵ-DP.

Pf: For any $D-D'$, $y \in \IR$, and query q, let $b = \frac{\theta}{\epsilon}$. Then

$$Pr\left(\frac{|M_{L}(0, b) - q(D)|}{\theta} \geq \frac{\epsilon}{\theta} \cdot \ln(\frac{1}{\delta})\right) \leq B$$

Ex: for $\Delta q = 2$, if $\delta = 0.01$, with prob $>99\%$, the error is $< \frac{2}{0.1} \cdot \ln(\frac{1}{0.01}) \approx 4.6$.

Claim: M_{L} is accurate.

Thus:

$$Pr[M_{L}(0, b) - q(D) > \frac{\epsilon}{b} \cdot \ln(\frac{1}{\delta})] \leq B$$

Pf:

Follows from standard Laplace distribution concentration bound:

$$Pr_{n \sim \text{Lap}(\frac{\Delta q}{\theta})}[|n| > c \cdot b] < C \cdot e^{-c} \quad \text{for all } c \in \IR^+$$

Implications of DP

1. Post-processing (sequential composition)

Lemma: Let $M : X \times Q \rightarrow Y$ be ϵ-DP and let $f : Y \rightarrow Z$ be any function. Then $f \circ M$ is ϵ-DP.

Pf: Fix $D-D'$, $q \in \Q$, and $S \in \Z$. Define $T = f(S)$.

$$Pr\left[|M(x, q) - f(S)| > \frac{\epsilon}{b} \cdot \ln(\frac{1}{\delta})\right]$$

= $Pr\left[|M(x, q)| > \frac{\epsilon}{b} \cdot \ln(\frac{1}{\delta})\right] < B$ (del of M_L)

$= B$ (by (4))
2. Parallel composition.

Defn. For $M : X \times Q \rightarrow Y$ and $M' : X' \times Q' \rightarrow Y'$, let $\mu \mu M : X \times (Q \times Q') \rightarrow (Y \times Y')$
be defined by

$$(\mu \mu M)(D, (q, q')) = (M(D, q), M(D, q'))$$

Thm. If M is ε-DP and M' is ε'-DP, then $\mu \mu M$ is $(\varepsilon + \varepsilon')$-DP.

Pf. Fix D, D', D_1, D_2 s.t. $D \neq D'$. Let Y, Y', Y_1, Y_2.

$$Pr[M(\mu \mu M(D, (q, q'))) = (y, y')] = Pr[M(D, q) = y \land M(D, q') = y']$$

Note: $\mu \mu M$ acts independently.

Q: What would EDP mean if E and n are $\mu \mu M(A)$?

A: Consider any two D, D'.

Note: $\exists n = D, D'$ s.t. $D = D_1, ..., D_n = D'$

$$Pr[M(D, q) = s] \leq e^{\varepsilon} Pr[M(D_{n-1}, q) = s] \leq e^{\varepsilon} Pr[M(D_{n-2}, q) = s] \leq e^{2\varepsilon} Pr[M(D_{n-3}, q) = s] \leq e^{n\varepsilon} Pr[M(D, q) = s]$$

$n \leq n \mu \mu M(A)$

\Rightarrow The output distributions are indistinguishable for any two databases \Rightarrow the output is useful.

\Rightarrow Through numerically weak security (i.e., $e = 0.1$), DP strikes a compromise between privacy and utility.

Deployment Notes

ε matters:

- Apple Quick Type ML uses DP (local model)
 - $\varepsilon = 8$ per contribution
 - 2 contributions per day
- Consider a 4-digit bank pin, sampled uniformly
 - Let M be the QuickType mechanism
 - Consider an adversary A that tries to guess p

 $$Pr[A(M(p, p) = Z_0)] \leq e^{\varepsilon} Pr[A(M(000) = p, p) = Z_0] \leq e^{\varepsilon} Pr[A(M(000)] \leq 8\%$$

\Rightarrow What is the epsilon?