Lattice Cryptography) (hera nat
Course Overiew

Foundations	AC	MPG	Lattices
PROS	Sigma	OT	\vdots
PRES	Pairings	Garbled Circuit	\vdots
PR PS	ZR	Z-PC Bearrotriples	
Commits			

Amazing Stuff, what else could there be?
Lattice Based Cryptography \downarrow 'fostering roe much
For example, ology

+ futoring re e much
- Plausibly Post Quantum: we need to update our computes primitives/protocols to be secure against adversaries that have quantum computers
sane FIST Post Quantum Standardization Finalists organization
that standardized signature Schemes
ABS
- Lattice based: Dilithium, Falcon

Code hosed
KENs
I -Hash based: SPHINCS
MEMs
restill
being cancidead Key Encapsulation Mechanisms
bent considered.

- Lattice based: Kyber

Isogeny Candidates
broken

- Diversify cryptographic assumptions for primitives - opens potential avenues to base cry ptography on normally rely
on avg waders worst case hardness / holy grail: cryptography based On NP-hard problem,
- Enables new functionalities!!!
- Fully Homonorphic Enc: Given an enc of a message x, honinteractively and efficiently compute a valid enc of $f(x)$ for any function f (of polysize)
but... What is a lattice?
Def: An n-dimensional lattice \mathcal{L} is a "discrete, additive subspace" of \mathbb{R}^{n}.
- Discrete: every $x \in \mathcal{L}$ has a neighborhood in \mathbb{R}^{n} where it is the only point.
- Additive subspace: $0^{n} \in \mathcal{L}$ and $\forall x, y \in \mathcal{L},-x \in \mathcal{L}$ and $x+y \in \mathcal{L}$

Example: the integer lattice \mathbb{Z}^{n}. the q-arr lattice $q \mathbb{Z}^{n}$ (i.e. the set of vectors whose entries are multiples of q)

Picture:

Computational Problems:

- Shortest Vector Problem: given a basis B for a lattice $\mathcal{L}(B)$, find the shortest non-zero vector $v \in \mathcal{L}(B)$
- Approximate SVP: SVP but with an approximation factor
- Decision problems and many mare...

Today, we will discuss the LWE Assumption and construct PKE from it.

Def: The Learning with Errors (LWE) problem is defined with respect to Lattice parameters n, m, q and an error distribution χ_{B} (often, a discrete Gaussian distribution over \mathbb{Z}_{q}). The LWE assumption states that for random $A \in \mathbb{Z}_{q}^{m \times n}$, $s \notin \mathbb{Z}_{q}^{n}, e \leftarrow \chi_{B}^{m}$, the two dist
are computationally ind istinguishable.

* LWE viewed as a lattice problem

$$
-\mathcal{L}(A)=\left\{A s: s \in \mathbb{Z}_{q}^{n}\right\}+q \mathbb{Z}^{n}
$$

- The search version of LWE: find s given Aste can be reformulated as: given in point Aste near a lattice point p $\in \mathcal{L}$, find $p \Leftrightarrow$ finding S.

Why does LWE Seem hard? (detour to search variant) * the search

Lets remove the error for a moment: and decision variants of LWE

$$
\left[A \in \mathbb{Z}_{q}^{m \times n}\right]\left[s \in \mathbb{Z}_{q}^{n}\right]=\left[b \in \mathbb{Z}_{q}^{m}\right]
$$

m equations, n unknowns if $m \geq n$ can use gaussian elimination to solve the linear system.
Adding back error:

$$
\begin{array}{r}
{\left[A \in \mathbb{Z}_{q}^{m \times n}\right]\left[s \in \mathbb{Z}_{q}^{n}\right]} \\
\underset{\sim}{\cong}\left[b \in \mathbb{Z}_{q}^{m}\right]+\left[e \leftarrow \chi_{B}^{m}\right] \\
\text { noisy, not equality! }
\end{array}
$$

Have to solve a noisy Linear system of equations.
For some choices of parameters and noise distributions, we believe this problem is both well defined/hard.

- $n=$ security parameter (more unknowns = harder system)
- $m=$ poly $(n), m \gg n$ (overdetermined) (more equations = easier) $\begin{array}{r}\text { problem })\end{array}$
- $q=p o l y(n)$
- $B \ll Q$ in X_{B} is a noise bound. All e in the support of X_{B} have $\|e\|_{\infty} \leq B$. (less noise $\left.=\underset{\sim}{\text { easier }} \begin{array}{l}\text { problem }\end{array}\right)$ $\max _{i \in[m]}\left(\left|e_{i}\right|\right)$

Regev Encryption (2005)
A simple "EL-Gamal style" public Key cryptosyotem, from LIE.
A Note:- We will view \mathbb{Z}_{q} as integers in range $\left(-\frac{a}{2}, \frac{a}{2}\right)$ for example $\mathbb{Z}_{7}:=\{-3,-2,-1,0,1,2,3\}$

- $\lfloor\cdot\rfloor$: floor will round down to nearest integer

Key Gen (1^{x}):

$$
\left.\begin{array}{l}
A \notin \mathbb{Z}_{q}^{m \times n}, s \leftarrow \mathbb{Z}_{q}^{n}, e \leftarrow X_{B}^{m} \\
b:=A s+e \in \mathbb{Z}_{q}^{m} \\
\operatorname{Output}(s k:=s, p k:=(A, b))
\end{array}\right\} \begin{aligned}
& \text { must choose pararn } \\
& \text { sit. } \frac{q}{4}>m B \\
& \text { for correctness }
\end{aligned}
$$

Encrypt (pk, x $x\{0,13$): encrypts single bits... Large ciphertexts

$$
r \in\{0,1\}^{m}, \quad C_{0}:=r^{\top} A \in \mathbb{Z}_{q}^{n}, \quad C_{1}:=r^{\top} b+\left\lfloor\frac{q}{2}\right\rfloor \cdot x
$$

Output $c t:=\left(c_{0}, c_{1}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$
$\operatorname{Decrypt}\left(s k:=s \in \mathbb{Z}_{q}{ }^{n}, c t:=\left(c_{0}, c_{1}\right)\right):$

$$
\tilde{x}:=c_{1}-c_{0} \cdot s
$$

if $|\tilde{x}|<\frac{a}{4}$ output 0
else output 1

Correctness:

$$
\begin{aligned}
\tilde{x}=C_{1}-C_{0} \cdot s & =r^{\top} b+\left\lfloor\frac{a}{2}\right\rfloor x-r^{\top} A s \\
& =r^{\top}(A s+e)+\left\lfloor\frac{a}{2}\right\rfloor x-r^{\top} A s \\
& =r^{\top} A s+r^{\top} e+\left\lfloor\frac{a}{2}\right\rfloor x-r^{\top} A s \\
& =r^{\top} e+\left\lfloor\frac{a}{2}\right\rfloor x
\end{aligned}
$$

noisy plaintext
Visual Interpretation:

By choice of params

We have $e \in X_{B}^{m}$ and $r \geqslant\{0,1\}$ so $\left|r^{T} e\right| \leq m B<\frac{q}{4}$ So if $x=0,|\tilde{x}|<\frac{a}{4}$ else if $x=1,|\tilde{x}|>\left\lfloor\frac{a}{2}\right\rfloor-\frac{a}{4} \geq \frac{a}{4}$.
Security (Proof Sketch):
View of Adversary
Comp (Hybri do: $p k=(A, b=A s+e), c_{0}=r^{\top} A, c_{1}=r^{\top} b+\left\lfloor\frac{q}{2}\right\rfloor \cdot x$
Ind by (Hybrid, $\quad p k=\left(A, v \in \mathbb{Z}_{q}^{m}\right), c_{0}=r^{\top} A, c_{1}=r^{\top} v+\left\lfloor\frac{q}{2}\right\rfloor \cdot x$
LW Y
statistically
Ind by
Ind by
LH
Hybrid $_{2}$: \quad pk $=\left(A, v \in \mathbb{Z}_{q}^{m}\right), c_{0}{ }^{\$} \mathbb{Z}_{q}^{n}, c_{1} \stackrel{\phi}{\perp} \mathbb{Z}_{q}$
(next page)

In Hybrid 2 , the ciphertext is randan and independent of x.
Leftover Hush Lena (LHL): * Proof omitted!

- Let $m \geq 2 n \log q$.

Therefore,

$$
\begin{array}{r}
C_{0}=r^{T} A \approx_{s} C_{0}+\mathbb{Z}_{q}^{n} \\
C_{1}=r^{T} r+\left\lfloor\frac{a}{2}\right\rfloor \cdot x \approx_{s} C_{1} \mathbb{Z}_{q}
\end{array}
$$

one time pad

