Intro to Elliptic Curves
TOG

- Motivation
- Group Review
- EC over Rationals
- EC over finite fields
- Efficient EC implementation
- Wrap up!
"Let \mathbb{B} be a group of prime order." for which discrete log and DDH is hard.
What groups do cryptographers actually use?
Group Review
A group (\mathbb{C}, \cdot) is a set \mathbb{G} with a distinguished element 1 (called the identity) and a closed, associative binary operation $: ~: G \cup \mathbb{G} \rightarrow \mathbb{G}$ such that
$\forall a \in \mathbb{G}, \exists b \in \mathbb{C}, a \cdot b=b \cdot a=1$ (inverses)
$\forall a \in \mathbb{G}, a \cdot 1=1 \cdot a=a$
(identity)
Additionally, a group can be:
- abelian: if - is commutative,

$$
\forall a, b \in \mathbb{G}, a \cdot b=b \cdot a \text {. }
$$

- cyclic: if $\exists g \in \mathbb{G}$ ("generator") s.t. $\mathbb{G}=\left\{9^{0}, g^{\prime}, \ldots, 9^{1(1-1}\right\}$

MATH Fact: Prime order groups are abelian and cyclic l
Subgroup: a subset $\mathbb{H} \subseteq \mathbb{C}$ s.t. (\mathbb{H}, \cdot) is also a group, where a is the natural restriction.
Order: the size of $|G|$ or the least exponent $\in \mathbb{Z}$ s.t. $n_{\in \mathbb{C}}^{\text {orch }}=1$.

Classic examples of prime order groups are:

- $\left(\mathbb{Z}_{p},+\right)$: additive group of integers mod p
- a prime order subgroup of $\left(\mathbb{D}_{p}^{*}, \cdot\right)$
- often p is a Sophie-Germain prime (also called "sate") of the form $p=2 q+1$
pine
$\frac{\text { Discrete } \log (0, g)}{[x \log }$
$\forall \operatorname{PPTA}, \operatorname{Pr}\left[x=\hat{x}: \begin{array}{l}x \not \mathbb{Z}_{p}, \\ \hat{x} \leftarrow A\left(6, g, g^{x}\right)\end{array}\right] \leq \operatorname{neg}(\lambda)$
- BLog is trivially easy for $\left(\mathbb{Z}_{p}, t\right)$ faster than \checkmark index
- For $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$, the best Known algorithm is the General call Number Field Sieve which runs in $2^{\widetilde{o}\left(\left(\text { op }{ }^{\frac{1}{3}}\right)\right.}$ (subexponatial tine).
- For $\lambda=128$ bits of secwity, $|p| \approx 3072$ bits
- In 2019, record was a $|p| \approx 795$ bits
- Group operations are expensive: requires arithmetic mod a 3072 bit prime
Desire: we would like a group that
has an efficient grap operation
- Dog, CDH, or DIt is hard next class
- has additional structure pairings useful for cryptography

History of Elliptic Curves
ECS are objects with deep commections to number theory and geometry. Diophantus, a greek mathematician in $3^{\text {rd century } A D \text { was interested }}$ in the set of rational points $\in \mathbb{Q} \times Q$ such that $f(x, y)=0$, for bivcrowle poly f. In geneal, finding rational points on plane curves can be incredibly had.

* Fermat wrote "Fermat's Loot Thm" in the margins of Arithmetica (the series written by Diophantus on this subject) * Andrew Wiles / Richard Taylor would later prove FLT using ECS - a populebooke written about this by simon Singh
In book 4 of Arithmetica, there was an excercise to find rational points satisfying $y^{2}=x^{3}-x+9$
Easy points $(0, \pm 3),(1, \pm 3),(-1, \pm 3)$

Given these easy points, can we derive other rational points?

Elliptic Curves
an elliptic curve is a smooth plane curve defined by an equation of the form

$$
y^{2}=x^{3}+A x+B \quad \text { (short Weierstrass form) }
$$

for $A, B \in Q$.

$$
\left(y^{2}=x^{3}-x+9\right)
$$

A curve is smooth if it has no cusps, self intersections, or isolated points.

Cannot be:

Thus, we restrict A and B such that the discriminat of the curve, $\Delta=-16\left(4 a^{3}+27 b^{2}\right) \neq 0$.

First goal: Given some points on the elliptic curve, can we enumerate other points? (Diophantus)
Key Observations

- An elliptic curve is symmetric: if a point (x, y) is on the curve so is $(x,-y)$.
- Lines tangent to the curve at the x-axis ore vertical (slope $y^{\prime}=\frac{3 x^{2}+A}{2 y}$ is ∞ when $y=0$)
- A line intersecting two points $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$ on the curve must intersect the curve at a third point $P_{3}=\left(x_{3}, y_{3}\right)$ (ignoring vertical lines) [Chord Method]

Sneak Peck gives us \longrightarrow an associative operation

- Suppose $y=m x+b$ goes through P_{1}, P_{2}. The equation $(m x+b)^{2}=x^{3}+A x+B$ has three roots x_{1}, x_{2}, x_{3} giving us the three points.

Procedwe to derive new Q points

- Draw a line between two points on the curve
- Obtain the point of intersection - flip the point across the x axis to obtain a new non-collinear point.

Elliptic Curve Group
What we just saw is a procedwe to take two points P1 and P2 on an elliptic curve and derive a new point P3 on the curve．If we denote this operation \＃， $P \mid \oplus P Z=P 3$ ，is the operation a group operation with the set of points being the group？

Not Quite！
We didn＇t handle vertical lines nor adding points to themselves．
－Adding points to themselves can be hadled by considering the line tangent to the curve of that point．
－Vertical lines requires a distinguished element called the point of infinity to be added to the group！
For an elliptic curve，$E: y^{2}=x^{3}+A x+B$ ，we define a group $E(Q):=\{\theta\} \cup\left\{(x, y) \in Q \mid y^{2}=x^{3}+A x+B\right\}$ with丑 defined as follows：（abs define $-(x, y)=(x,-y)$ ）
Cases：PI 1 PL
－If $P 1=\theta$ ，then $P 1$ PPI $=P 2$ ．Symmetrically，if $P Z=\theta$ ．
－Else，if $P 1=-P 2$（the flip），$P 1 \boxplus P 2=\theta$ ．
－Else，define

$$
\begin{array}{lll}
\lambda= \\
\begin{array}{l}
\lambda \text { slop of } \\
\text { line }
\end{array} & \begin{array}{ll}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P_{1} \neq P_{2}
\end{array} & \text { (chard method) } \\
\frac{3 x_{1}^{2}+A}{2 y_{1}} & \text { if } P_{1}=P_{2} & \text { (tangent method) }
\end{array}
$$

If $P_{1} \neq P_{2}, \quad x_{3}=\lambda^{2}-x_{1}-x_{3}, y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$.
If $P_{1}=P_{2}, \quad x_{3}=\lambda^{2}-2 x_{1}, \quad y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$.
\uparrow
often called doubling case.
Does this satisfy the properties of a group?
Identity: θ
Inverses: (the flip point)
Associativity: V (a lot of manual algebra to prove)
Great! Can we do cryptography now?
Issues:

- Rationals doñt hone finite representations. This maker secure implementation hard since we dart handle infinite precision.
- had to calculate exact order

How can he obtain a finite group of prime oder using the theory of elliptic curves?

EC over Finite Fields
$\mathbb{F}_{p} \cong \mathbb{Z}_{p}$, we will refer to as a base field.
Let $p>3$ be a prime. An elliptic curve E defined over a finite field $\mathbb{F}_{p}\left(E / \mathbb{F}_{p}\right)$ is an equation

$$
y^{2}=x^{3}+a x+b
$$

where $a, b \in \mathbb{F}_{p}$ s.t. $4 a^{3}+27 b^{2} \neq 0$.
this condition (the discriminant) avoids singularities

- $E\left(\mathbb{F}_{p}\right)$ is the set of points $(x, y) \in \mathbb{F}_{p}^{2}$ satisfying the equation and the special point at infinity 0 .
- Schoof has alg running $O\left(\log \left(p^{e}\right)\right)$ to get $\left|E\left(\mathbb{F}_{p^{e}}\right)\right|$.

Example: $E / \mathbb{F}_{11}: y^{2}=x^{3}+4 x+4,\left|E\left(\mathbb{F}_{11}\right)\right|=11$

x	0	1	2	3	4	5	6	7	8	9	10
$x^{3}+4 x+4$	4	9	9	10	7	6	2	1	9	10	10
y	± 2	± 3	± 3	n/a	n/a	n/a	n/a	± 1	± 3	n/a	n/a

and so there are 11 points modulo $11:(0, \pm 2),(1, \pm 3),(2, \pm 3),(7, \pm 1),(8, \pm 3)$, and ∞.
Here we have a prime order group!
Note: when moving from rationals to finite fields, the properties of the aldition laws needs to be reproven.
This is done with a lot of algebra.

BLog in EC Groups
Let E / \mathbb{F}_{p} be an $E C$ and $E\left(\mathbb{F}_{p}\right)$ be the group of points. Further, Let P be a point in $E\left(\mathbb{F}_{p}\right)$ of prime order $q \quad(|p| \approx|q|$ in bits $)$

$$
q P:=\underbrace{P \boxplus P \boxplus \ldots \boxplus p}_{q \text { times }}=\theta
$$

P must generate a prime order subgroup $(\{\theta, p, 2 p, \ldots,(q, 1) P\}, \mathbb{T})$ of $E\left(\mathbb{F}_{p}\right)$.
The O Log problem is given $P, \alpha P\left(\right.$ for random $\left.\alpha \in \mathbb{Z}_{P}\right)$, calculate α.
For most $E C s$, the best BLog attacks are $\Omega(\sqrt{q})$. This means for $\lambda=128$ bits, the group needs to be size $\approx 2^{256}$. The group operation involves arithmetic modulo a 256 -bit prime which is much faster then $\left(\mathbb{Z}_{p}{ }^{*} \cdot\right)$ with similar security levels. $p \neq\left|E\left(\mathbb{F}_{p}\right)\right| \approx p$

- There are exceptions in which Dog is easy:
- when $\left|E\left(\mathbb{F}_{p}\right)\right|=p$, it is possible to map points to the additive group of \mathbb{F}_{p} ("SMART" Attack)
- When $\left|E\left(\mathbb{F}_{\rho}\right)\right|$ divides $p^{B}-1$ for small B (MOV attack)

In practice, we standardize EC (P256, Curve 25519, etc) to use that avoids common pitfalls. twist secure

- either ne choose an EC Drama about parameter Selection whose group is already a prime or pick a prime order subgroup.

Efficient Implementation of EC operations

- Reviewing the elliptic curve group operation, the calculation of the slope requires a field inversion

$$
\lambda=\left\{\begin{array}{l}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \longleftarrow \\
\frac{3 x_{1}^{2}+A}{2 y_{1}}<
\end{array}\right. \text { inversion }
$$

- A field inversion is mach mare expensive than a field additia or multiplication. Requires running a variant of the extended evcliden ago. ≈ 9 to 40 tines a field mult (piratically)
- car we avoid field inversions whee adding points?

Jacobian Coordinates
Idea: We can "accumulate" our divisions by storing on additional element.
Let ($x: y: z)$ represent an affine point $\left(\frac{x}{z^{2}}, \frac{y}{z^{3}}\right)$.
Affine \mapsto Jacobian: $(x, y) \mapsto(x: y: 1)$,
Jacobian H Affine: $(X: y: z) H\left(\frac{x}{z^{2}}, \frac{y}{z^{3}}\right)$
Notice that when we convert to Jacobian coordinates we lose uniqueness. In particular, $\left\{\left(t^{2} x, t^{3} y, t\right) \mid t \in \mathbb{F}\right\}$ all denote the same affine point (x, y).
Simarly, $\theta \mapsto\left\{\left(t^{2}: t^{3}: 0\right) \mid t \in \mathbb{F}\right\} \quad($ i.e. $z=0)$

Doubling Formula for Jacobian Coordinates
Doubling a Jacobian ($X: Y: Z$)

$$
\lambda=\frac{3 x_{1}^{2}+A}{2 y} \quad x_{3}=\lambda^{2}-2 x_{1} \quad, y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
$$

Substitute $\left(\frac{x}{z^{2}}, \frac{y}{z^{3}}\right)$ into affine formulas,

$$
\left.\begin{array}{l}
\lambda=\frac{3\left(\frac{x}{z^{2}}\right)^{2}+A}{2\left(\frac{y}{z^{3}}\right)}=\frac{3 x^{2}+A z^{4}}{2 y z} \\
x_{3}=\lambda^{2}-2\left(\frac{x}{z^{2}}\right)=\frac{C}{4 y^{2} z^{2}} \\
y_{3}=\lambda\left(\frac{x}{z^{2}}-x_{3}\right)-\frac{y}{z^{3}}=\frac{D}{8 y^{3} z^{3}}
\end{array}\right\} \text { affine coords }
$$

Notice $4 y^{2} z^{2}=(2 y z)^{2}, 8 y^{3} z^{3}=(2 y z)^{3}$.
Thus, the Jacobian coords of doubly $(X: Y: Z)$ is $(C, D, 2 Y Z)$.

- calculation of C, D require only a small number of field add/freld mults
Butch Conversion
- To convert Jacobian coonds to affine, we need to perform an inversion $(x: y: z) \mapsto\left(\frac{x}{z^{2}}, \frac{x}{z^{3}}\right)$, suffices to invert z and then call $\left(\frac{1}{z}\right)^{2},\left(\frac{1}{z}\right)^{3}$.
- Naively, to convert n Jacobian points to n affine points, he require n inversions. However, he can batch inversions!

Batch Inversion

- We want to invert field elts, z_{1}, \ldots, z_{n}.

Alg

- Compute table of partial products

$$
p:=\left[z_{1}, z_{1} z_{2}, \ldots, z_{1} z_{2} \ldots z_{n}\right]
$$

- Invert $z_{1} z_{2} \ldots z_{n}$ as $I_{1, n}:=\frac{1}{z_{1} z_{2} \ldots z_{n}}=\frac{1}{p_{n}}$
- $\frac{1}{z_{n}}=I_{1, n} \cdot p_{n-1}=\frac{1}{z_{1} \ldots z_{n}} \cdot z_{1} \ldots z_{n-1}$
- $I_{1, n-1}=I_{1, n} \cdot z_{n}=\frac{1}{z_{1} z_{2} \ldots z_{n-1}}$
- $\frac{1}{z_{n-1}}=I_{1, n-1} \cdot P_{n-2}$ and so on

Inverting n eats requires 1 inversion, $O(n)$ malts
Diagram

Wrapping up
Els used widely for PK crypto

- EC are much more efficient in practice than using subgroups of $\left(\mathbb{Z}_{p}^{*},\right)$ ot similar security levels
- Els have algebraic structure that enable many applications - pairings (identity based encryption, eff sigs...)
- most crypto libraries do not expose the groups operations of ELs for safety

