CS 355: Topics in Cryptography Spring 2024
Problem Set

Due: Friday, 12 April 2024 (submit via Gradescope)

Instructions: You must typeset your solution in LaTeX using the provided template:
https://crypto.stanford.edu/cs355/24sp/homework. tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
RKN4PX to sign up. Note that Gradescope requires that the solution to each problem starts on a new
page.

Bugs: We make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask
a clarifying question on Ed.

Problem 1: Composition [10 points]. Determine whether each of the following statements is TRUE or
FALSE. For the first two statements, prove that your answer is correct. That is, give a security proof or
describe an adversary and prove it has high advantage.

Let F(k,x) — y be a PRE and f(x) — y be a OWE and let G(s) — r be a PRG. Assume that the PRF
outputs fixed-length bit-strings.

1. The function F; (k, (x1, x2)) = F(k,x1) ® F(k, x») is a PRF
2. The function F»>((kj, k»), x) = F(k;, x) ® F(k,, x) is a PRF
3. The function G3(s) = (G(s), G(s)) is a PRG

4. The function G4((s1, s2)) = (51, G(s2)) is a PRG (where s1, 52 € S: the seed space for G)

o

. The function f5((x1, x2)) = (f(x1), f(x2)) is a OWF

Problem 2: A weak form of the Goldreich-Levin Theorem [10 points]. We say that b: {0,1}* — {0,1}
is a hardish-core bit of a permutation f if b(x) is efficiently computable given x, and for every efficient
algorithm A4 it holds that

PrlA(f(x) =b(x): x < {0,1}"1 <3/4+¢

for every positive constant e.l We will prove that if f: {0,1}" — {0,1}" is a one-way permutation, then
b(x,r) = (x,r) is a hardish-core bit of the permutation g: {0,1}?>" — {0,1}>" defined as g(x,r) = (f(x), 1)
for x,r € {0,1}". Here (x, r) denotes the inner product of x and » mod 2.

For the sake of contradiction, suppose that there exists a constant € > 0, and an algorithm .4 that takes
as input f(x),r € {0,1}"" and outputs a bit, such that

fg[A(f(x), r)={(x,r)] =3/4+¢,

where the probability is taken over both x and r, each chosen uniformly from {0, 1}"*. We will construct an
algorithm B that breaks the one-wayness of f.

1An actual hard-core bit cannot be guessed with probability noticeably better than 1/2.

https://crypto.stanford.edu/cs355/24sp/homework.tex
https://gradescope.com/

c

[T

hio hi \ / hi» hi3
A AN 4 AN 4 AN 4 AN
X0 X1 X2 X3 X4 X5 X6 X7

Figure 1: A Merkle tree

(a) As a warmup, suppose first that Pr[A(f(x),r) = (x,7r)] = 1. Show how to construct an efficient
algorithm B that perfectly inverts f (i.e., given f(x) outputs x).

(b) Next, we say that x € {0,1}" is good for A if Pr,[A(f(x),7) = {x,)] = 3/4+¢€ for some positive constant
€, where the probability is taken only over r < {0, 1}"*. Construct an efficient algorithm B that takes
as input f(x) for a good x € {0,1}" and outputs x with probability at least 1/2, by calling .A at most
O(n-logn) times.

(c) Show that x chosen uniformly from {0, 1}" is good with some constant probability. Conclude that
algorithm B breaks the one-wayness of f.

Problem 3: Vector Commitments [5 points]. In this problem we consider vector commitments: commit-
ments to vectors which can be opened to one index at a time.

The classic construction vector commitment scheme is the Merkle tree, which is parameterized by
a hash function H: X x X — X. The core of this construction is a hash tree, as shown in Figure 1.
Each internal node in the tree represents an evaluation of the hash function over the child nodes. The
Commit procedure evaluates the hash tree, returning the root at the commitment. The ldxOpen procedure

produces the siblings along a path (e.g., the blue nodes, for x,), and the IdxVerify checks the hash
evaluations along the path.

More precisely, the Merkle tree vector commitment scheme is defined by three algorithms:
e Commit(deN,x € de) —X:

forie{0,1,...,2% = 1}: hy; — x;

for 0 €1{1,2,...,d}, fori €{0,1,...,297¢ = 1}: hy; — H(hy_1 21, ho_12i41)

return kg o

+ ldxOpen(d €N, i eN,xe X2") — x4
compute kg ; as in Commit
for€{0,...,d—-1}: p; — hg,((i»g)@l)z

return (po,..., Pa-1)

2Here, > is logical right shift and @ is bitwise XOR, as in C. That is, x > y denotes |x/2Y]| and x ® y denotes the integer with
binary representation equal to the bitwise XOR of the binary representations of x and y.

o ldxVerify(deN,ieN, x, € X,ceX,p(—:Xd) —1{0,1}:

hy — x

for¢e{l,...,d}:
j—i>{-1)
if jisodd: hy — H(py—1, hy-1)
else: hy — H(hy—1, pe-1)

return h e

A vector commitment scheme is index binding if for all d € N and for all efficient adversaries .4,

Pr{ldxVerify(d,i,x,c,p) = 1 AldxVerify(d,i,x",c,p) =1Ax#x": (c,i,x,p, X', p") — A(d, 1)} = negl(1)

where A is the security parameter of H. A hash function H is collision resistant if for all efficient adversaries
A,
Pr{H(x,y)=HX,y)A(x,y) # (", ¥): (x, 3, X, y) — AN} = negl(1)

Please prove that Merkle tree vector commitments are index binding if H is collision-resistant.

Problem 4: Key Leakage in PRFs [5 points]. Let F be a secure PRF defined over (IC,X ,y), where
K=X=Y=1{01" Let K; ={0,1}""!. Construct a new PRF F;, defined over (ICI,X,J/), with the
following property: the PRF Fj is secure; however, if the adversary learns the last bit of the key then the
PRF is no longer secure. This shows that leaking even a single bit of the secret key can completely destroy
the PRF security property.

[Hint: Try changing the value of F at a single point.]

Optional Feedback [0 points]. Please answer the following questions to help us design future problem
sets. You do not need to answer these questions, and if you would prefer to answer anonymously, please
use this form. However, we do encourage you to provide us feedback on how to improve the course
experience.

(a) What was your favorite problem on this problem set? Why?
(b) What was your least favorite problem on this problem set? Why?
(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

Problem 5: Time Spent [1 point for answering]. How long did you spend on this problem set? This is for
calibration purposes, and the response you provide will not affect your score.

https://forms.gle/M1dQ6EoiuyawCbvr5

	Problem 1: Composition [10 points].
	Problem 2: A weak form of the Goldreich-Levin Theorem [10 points].
	Problem 3: Vector Commitments [5 points].
	Problem 4: Key Leakage in PRFs [5 points].
	Optional Feedback [0 points].
	Problem 5: Time Spent [1 point for answering].

