Lecture II
- \(\Sigma \)-protocols for boolean gate constraints

- Non-interactive ZK?
 \(\Rightarrow \) Fiat-Shamir Heuristic
 - Schnorr Signatures
 - HVZK \(\Sigma \)-protocol \(\Rightarrow \) NIZK (ROM)
Towards a Σ-protocol for Circuit-SAT

Recall: Pedersen Commitments

\[g, h \leftarrow G \]
\[\text{Commit}(m \in \mathbb{Z}_p, r \in \mathbb{Z}_p) = g^m h^r \]

Say you have 3 commitments \(c_1, c_2, c_3 \). A prover wants to convince verifier that it knows \(m_1, m_2, m_3 \in \{0,1\}^3 \) and \(r_1, r_2, r_3 \in \mathbb{Z}_p \) s.t. \(\forall i \in \{1,2,3\} \ \ c_i = g^{m_i} h^{r_i} \) and \(m_1 \land m_2 = m_3 \)

This corresponds to land you are given in HW3!

Idea: since \(m_1, m_2, m_3 \) are bits, there are only 8 possible combinations of values, and only 4 of these combos are in the language \(\text{Land} \)

So it suffices to prove:

\((m_1 = 0 \ \text{AND} \ m_2 = 0 \ \text{AND} \ m_3 = 0) \)
\[\text{OR} \]
\((m_1 = 0 \ \text{AND} \ m_2 = 1 \ \text{AND} \ m_3 = 0) \)
\[\text{OR} \]
\((m_1 = 1 \ \text{AND} \ m_2 = 0 \ \text{AND} \ m_3 = 0) \)
\[\text{OR} \]
\((m_1 = 1 \ \text{AND} \ m_2 = 1 \ \text{AND} \ m_3 = 1) \)
we know how to do AND/OR of \(\mathbb{Z}_p \) protocols from last time, so we just need to see how to prove that \(a_i \) commits to 0 or 1.

Q: How to show \(m_i = 0 \) or \(m_i = 1 \)?

Recall Schnorr’s Protocol

A Pok for \(\{ (x = (g, h) \in G^2, \text{ we } \mathbb{Z}_p) : g^w = h^3 \} \)

\[
\begin{align*}
 P &: (g, h, w) \\
 r &\leftarrow \mathbb{Z}_p \\
 g^r &\leftarrow c \\
 z &\leftarrow wc + r \\
 g^z &= h^c g^r
\end{align*}
\]

A: To show \(m_i = 0 \), show
\[
 c = g^m h^r
\]

→ use Schnorr to show
\[
 c = h^r \quad \text{“} w \text{”}
\]

\[
 c = g^h \quad \text{“} g \text{”}
\]

To show \(m_i = 1 \), show
\[
 c = g^m h^r
\]

→ use Schnorr to show
\[
 c = h^r \quad \text{“} w \text{”}
\]

\[
 c = h^g \quad \text{“} g \text{”}
\]

\(\Rightarrow \) Works for any truth table!

\(\Rightarrow \) HW: Circuit - SAT
NIZKs

Q: 2 protocols give us 3-message ZK protocols. Can we do better? Can we get 1-message ZK protocols? If so, for which languages?

"Non-Interactive Zero Knowledge (Proofs)"

\[\pi \]

Suppose we have a complete, sound, ZK, non-interactive proof.

\[\exists \text{Sim}(x) \rightarrow \pi ', \text{that verifier (efficient distinguisher) can't distinguish from real proof} \]

\[\forall x \in L \leftrightarrow \exists \pi \ \text{Verify}(x, \pi) = 1 \leftrightarrow \text{Verify}(x, \text{Sim}(x)) \]

\[\text{sound/comllete} \]

\[\text{ZK} \]

\[\text{a PPT alg for } x \in L(BPP) \]

*Intuition: when proof is 1 message, Sim alg should be able to output the message \(\pi \)

But NIZKs are possible if we change the model

\[\text{RO Model} \]

\[\text{CRS} \]

\[\text{P} \rightarrow \pi \rightarrow \text{V} \]
N_1, ZK, Pok in ROM with Fiat-Shamir Heuristic

Fiat-Shamir allows us to convert \sum-protocol for NP relation R into a NIZKPok in RO model

\sum-Protocols

$P((x, w) \in \Pi) \xrightarrow{\text{commitment } t} V(x) \xrightarrow{\text{challenge } c} \xrightarrow{\text{response } z} \{0, 1\}^*$

Properties

1. Completeness: $\forall x \in L, \Pr[\langle P(x, w), V(x) \rangle = 1] = 1$
2. Special Soundness: \exists deterministic efficient E s.t. \forall pairs of accepting (t, c, z) (t', c', z') w/ $c \neq c'$ $(x, E(t, c, z, t', c', z')) \in R$
 * special case of knowledge soundness
3. Special Honest Verifier Zero Knowledge: \exists deterministic efficient $\text{Sim}(x, c) \rightarrow (t, z)$ s.t.
 - $\forall (x, w) \in \Pi \{t, c, z\}: c \notin C; t, z \leftarrow \text{Sim}(x, c) = \{P(x, w), V(x)\}$
 - $\forall x, t, z \leftarrow \text{Sim}(x, c) \rightarrow (t, c, z)$ is an accepting transcript

Notice that V 1) sends only random values to P
2) has no secret state

We call this "public coin"
Fiat-Shamir Idea: replace verifier's message with the random oracle \(c \leftarrow H(x,t) \in \mathbb{Z}_q \)

Schnorr: (Prove knowledge of \(w \) st. \(h = g^w \))

Schnorr-FS: (Prove knowledge of \(w \) st. \(h = g^w \) non-interactively)

\[
\begin{align*}
\text{P}(g,h,w) & \quad r \leftarrow \mathbb{Z}_p \quad g^r \\
\text{V}(g,h) & \quad c \leftarrow H(g,h,g^r) \quad g^z \equiv h^c g^r
\end{align*}
\]

Analysis
1. **Completeness** is direct
2. **ZK** follows from HVZK of underlying ZK-protocol \(\rightarrow \) **RO** behaves like honest verifier!

Q: What does **ZK** mean in **ROM**?

A: Simulate \(P \leftrightarrow V \) transcript \& **RO** queries called "programming" the **RO**

Sim:
- map \(M : \mathbb{G}^3 \rightarrow \mathbb{Z}_p \)
- \(c \leftarrow \mathbb{Z}_p \)
- \(t, z \leftarrow \text{Sim}_{\text{Schnorr}}((g,h), c) \)
- set \(M[(g,h,t)] \leftarrow c \)
- output \((t,c,z) \)

on **RO** query \(x \): if \(x \notin M \), set \(M[x] \leftarrow \$ \mathbb{Z}_p \), output \(M[x] \)
3. \(\text{Pok} \)

Q: How do we prove Pok in \(\text{ROM} \)?

Standard

\[
P \xrightarrow{\text{mi}} V \quad \text{E can rewind + choose},
\]

\[
P \xleftarrow{\text{ri}} \quad \text{E can rewind + choose}
\]

A: Ext behaves just like protocol extractor, except instead of rewinding & choosing \(V \) messages, extractor rewinds, chooses \(V \) messages, and reprograms \(RO \) for new challenge.

Schnorr - FS soundness

\[
E:
\begin{align*}
- & c \neq c' \leftarrow C \\
- & \text{run } P^* \text{ when it queries } \text{RO} \text{ for challenge, give } c \\
- & \text{run } P^* \text{ when it queries } \text{RO} \text{ for challenge, give } c' \\
- & \text{use 2 transcripts + } E_{\text{Schnorr}} \text{ to get witness}
\end{align*}
\]

Bonus: Signatures

- simply add \(m \) to the hash and let \(\text{pk} = g^{sk} \)
- \(H: \mathbb{G}_1 \times \mathcal{M} \rightarrow \mathbb{Z}_p \)
- \(\text{Sign}(\text{pk}, \text{sk}, m, g) : \)
 \[
 \begin{align*}
 & r \leftarrow \mathbb{Z}_p^* \\
 & c \leftarrow H(\text{pk}, g, g^r, m) \\
 & z \leftarrow \text{sk} \cdot c + r \\
 & \sigma \leftarrow (z, g^r)
 \end{align*}
 \]
- \(\text{Verify}(\text{pk}, m, \sigma, g) : \)
 \[
 \begin{align*}
 & c' \leftarrow H(\text{pk}, g, g^r, m) \\
 & g^z = \text{pk}^c \cdot g
 \end{align*}
 \]
Notes
- in this specific case, don’t need pk in hash
- could send c, not \(g^r \), and compute \(g^c = g^{2/pk} \)
 and check \(c = H(pk, g, g^r, m) \)
- soundness error is \(\frac{1}{\ell_c} \) so c can be 128 bits
- \(z \) is in \(\mathbb{Z}_q \), which would be 256 bits for EC group
→ total size of signature = 128 + 256 = 384 bits

Compare:
 RSA-FDH = 3072 bits
 BLS : 384 bits (pairing group size)

In practice, ECDSA signatures are widely used;
same idea as Schnorr but worse; why is it used? Patents!

A general perspective:
Fiat-Shamir lifts a \(\Sigma \)-protocol w/ completeness + SHVZK + SKS to a non-interactive ZK-PoK (in the ROM)

It’s also useful for other constant-round public-
coin protocols (and some \(\ell(l) \)-round protocols too!)