Leca. (Apr 4'24) Symmetric Crypto Outline : -Recap - Game based Depr. PRG entension (BM'84) - Hybrid Arguments PRFS from PRG (GGM 84) - Werap up Today RE(AP: Blum-Miali GGM Goldreich-Levin Blum-Milali (OWF PRG1 PRG1 >PRF (1-bit stretch) (poly(A)-stretch) Last class PRP/ Block apper

Def: A PRG G : S -> R is a deterministic, poly-time algorithm that given a seed & ES (seed space) as input, outputs MER (output space). Gr is secure if for all <u>efficient</u> adversaries A, $\left|\Pr\left[A(x)=1:x \in G(8)\right] - \Pr\left[A(x)=1:x \in R\right] \leq \operatorname{negl}(A)\right|$ $\left|\operatorname{Ars}\left[A(x)=1:x \in G(8)\right] - A, \pi\left[A(x)=1:x \in R\right] \leq \operatorname{negl}(A)\right|$ Here, the probability space is over reandom envice of s, r, and randomness of A. Last lecture: Seeme PRG G: {0, 12 - 10, 12 with 1-bit stretch from a ONF using Hand core bits. (GIL) Today: Green a secure PRG : G: Lo, 13 - do, 19, we build another PRG, $G': \{0, 1\} \longrightarrow \{0, 1\}^{\ell(n)}, \text{ where } l is a poly, (l(m) 7 n+1)$

Game based definition of PRCT security: -(easier to work with) In the above definition, the adversary A needs to act as a distinguisher: blue two distributions: Do et KEGISD, 15. ERERRY Do et KEGISD, 15. ERERRY Do et KEGISD, 15. ERERRY We can rebrame this as a game blue A and a challenger:-Experiment O: Z Do chal. A 864 S $x \in G(s)$ $\langle 6 \rangle$ Experiment 1: d D' chal. RE\$ R M

Let Wo: Event that A outputs 1 in txp O Ny: " " " Exp1. Then, we define: PPGAdv[A, Gr] = Advantage of A in the PRG security game for G $= \left[P_{\mathcal{H}}(W_{0}) - P_{\mathcal{H}}(W_{1}) \right]$ where the probability space is over the random choices of the Challenger and A. Gr is secure if, 4 efficient adversaries PROIADN JA, GrJ < negl(). (p Identical to the distribution - based defin, above. PRGI Extension: - (Blym-Micali 184) Vet Gi: {0,12 - {0,12 be a secure PRG. We will construct Gi: {0,12 - {0,12 be a secure PRG.

G: {0,13 -> {0,13 × {0,13 ES 1 entra bit X. We can sequentially compose GI, to get many random - looking bits. E {0,19 E {01,3 $8 \longrightarrow G_1 \longrightarrow 8_1 \longrightarrow G_1 \longrightarrow 8_2 \longrightarrow G_1 \longrightarrow 8_{(n)}$ $b_1 \in f_{0_1} \cap g \qquad b_2 \in f_{0_1} \cap g \qquad b_{(n)}$ Output $(b_1, b_2, \dots, b_{2(m)}) \in \{0, 1\}^{(m)}$ Formally, formally, $G'(s \in \{0, 13^n\}):$ $b_0 = b$ for each $i \in \{1, 2, ..., l(m)\}$: $(s_i, b_i) \leftarrow Gr(s_{i-1})$ OLP (bi, --- be(m)) 35 G'à secure PRG? 1) Efficient? Let t(n) be the reuntime of G. Then, G' runtime is: l(n) * t(n) + O(l(n)) s poly.

2) secure? Informal: Gr secure => Gr secure Thim. For every adv A playing the PRG game for G, Fan adversary B that plays the PROI game for Gr, PRGAAN (A, G¹] = l(n). PRGAAN (B, G). Negl & poly negl is G is secure Proof Informally: - $8 \rightarrow 0, 3, -6, -32$ (i) For random &, the O/P of Gr looks random, so, we can replace (Si, bi) by random elements: - $8, \epsilon \neq \{0, 1\}$ \sim_{C} $b_{1} \epsilon \neq \{0, 1\}$ b_{2} $b_{3} \epsilon \neq \{0, 1\}$ $b_{4} \epsilon \neq \{0, 1\}$ $b_{5} \epsilon \neq \{0, 1\}$ (1) now, & is random, so we can

replace (s_2, b_2) by random elements: $s_2 \in \{s_0, i\}^{N}$ $b_1 \in \{0, i\}, b_2 \in \{0, i\}$ by random elements: $b_1 \in \{0, i\}, b_2 \in \{0, i\}$ by $b_2 \in \{0, i\}$ and so on , (we can de this for each PRG on the chain . How to FORMALIZE the above intuition? Hyperid Arguments: Recall we debined 2 games, Exp0, Exp1 in the PRG security defn. Expo! = Ho Chal samples SE\$ {0,13" and gives r=Gi(s) to A! send r = (bis b2, ..., be(m)) to A. games, Ho = Expo, H, Hem where we'll slightly change the challenger's behavior in each hybrid.

H, Hybrid 1: Oral samples Si, b, E\$ give M= (b1, b2..., be(m)) to A. (Informally, no adv should be able to distinguish blue Ho, H, due to) security of PRG G. Hj: Hybruidj: $s_j \in \{0, 1\} \rightarrow [c_1] \dots [c_n\}$ Hen : = Exp 1 in PRG security defn. For i e fo, 1, ..., l(n) 4, define pi as the probability that A outputs 1 in Hybrid game Hi. By defining

1 in Expo 1 in Expl PRGIAdv [A, Gi] = [Re[Wo] - PM[Wi]] $= |p_0 - p_{\ell(m)}|$ Now, we'll construct the adv B playing the PRG. security game for G. (for Gi) 4640, 13, 1) &) HE for 13 i) lample w E f(1,...,l(m)]. 2) Sample bin in buri Et for 13 3) Parse H as (sw, bio) Simulating a (5) - Sw+1 - (5) -5) Run A: (binnin, bran) A. 16 In the game that B is playing, Exp0: r=G(s) for reandom seed s: <u>s</u>GJ->Sw

i.e. by ... bus-1: Handom, but bus, ----, beins generated as in Hw-1. this is Hybrid Mus- from A's perspective. Ð) Exp13 ME\$R, ME(Sw, bw) > biz ..., bus '- random. =? B 'identically simulates' hybrid Hus to A. This means, Pre A outputs I in Hj-1 $\mathcal{B}(W_{0,B}, | w = \dot{\delta}) = P_{i-1}$ and event that B outputs 1 * B outputs whatever A outputs * B is simulating Hj-1 in the event Wob/w=3, so, A outputs 1 with prob pj-1. vin Etpo $PM(W_{1B}|_{w=j}) = P_{j}^{*}$ for all j... 20, $PAGAAN[B, G] = [Pr[W_{0B}] - Pr[W_{1B}]]$ By total probability : -

 $= \left\{ \begin{array}{c} l(m) \\ \Xi \\ j=1 \end{array} \right\} \left\{ \begin{array}{c} w_{0B} \\ w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{0B} \\ w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{0B} \\ w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{1B} \\ w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{2} \\ w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{2} \\ w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{2} \\ w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{2} \\ w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{2} \end{array} \right\} \left\{ \left\{ \begin{array}{c} w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_{2} \end{array} \right\} \left\{ \begin{array}{c} w_$ $\frac{1}{p_0 + p_1 + \frac{1}{p_1 + \frac{1}{p_2 + \frac{1}{p_1 + \frac{1}{p_2 + \frac{1}{p_1 + \frac{1}{p_2 + \frac{1$ = I (po - pecns) = $\frac{1}{2(m)}$ - $\frac{1}{2(m)}$ i.e. RGADV (A, G) = l(n). RRGADN (B, G] so, if G is secure, meaning PRGAdv[B,G] is negr(X) 4 B, then, G' must also be secure bc l(n). negr(X) is negr(A). Hence, 61 is a secure PRG.

PRFS : (pseudo sandom functions) PRFF: K × X → Y: deterministic, Key Input Output algorithm. space space. Informally, for a reandom key K, F(K, .) should look like a Plandom function from X to Y. Fune [X, E] = space of all functions from X to Y. e.g. if $K = d_0, 12^{128} = X = Y_2$ # Keys = 2¹²⁸ = # PRFs. But # functions in func $(x, y] = |y|^{(x)}$ $= (2^{128})^{2^{120}}$ (K). i.e. Fune [X, Y]. 77. PRF security game:

ExpO: Ural REF. K Aon A. $\frac{\chi_i}{f(\chi_i)}$ $f \in F(R, \cdot)$ $f(x_i) = F(K, x_i)$ B Adv. can make arbitrary Ni. poly. # Queries, on Exp 1: $f(n_i)$ P(enal: f < & Func(X,Y) < Xi

Let Wo: Event that A outputs 1 in txp b.

Advantage of A wrsit: PRFF: PRFAdv (A, F] = [Pr[Wo] - Pr[Wi]]

A is called a Q-query adversary if it makes upto Q queruis to the chal.

A PRF F is secure of 4 efficient adversaries A, PRFAdv (A,F) < negl(). PRF from PRG1. (Goldreich, Goldwassen, Michielie) Twing! Given a PRG G:S > S×S, we can construct a PRF: " length - doubling" Visualize Gras: lits say, so = Gr(s) (57) (57) (57) (52) (53) we'll make PRF F: SX {0, 12 -> S as follows:-Key space = S. But strings, lets say l= A F(8, n): let $n = (n_1, \dots, n_e)$: s eg. l = 3 and $n = \{1, 0, 1\}$ 800 801 810 500 800 500 800

i-e = F(8, 101) = 8101= G_{1} (G_{0} (G_{1} (S))) (X_{3} X_{2} X_{1}) * For x = n, ..., Xe, traverse the path in the above tree of evaluations Formally, F(s, (x, ... xe)): $t \in s$ for i in f_1, \dots, f_3 : $t \in G_{x_i}(t)$ of t. Is Fa secure PRF? 1) Ebbiciency: levals of G1 / 2) security: = poly(X) Thm: For every Q-query PRF adv. A, we can construct a RRG adv B, s.t. PRFADN [A, F] = l.a. PRGADN (B, G] i.e. Gris a => Fis a secure secure PRG, PRF.

Broof Sketch:

ljiven A: an adv. for the PRF game for F, we'll construct B: an adv. for the PRG game for G. rie'll use the Hybrid argument! Naively, we could replace each PRG O/P by random, one-by-one: Ho = Expo Bor A: H, H2: 8:4 (lral samples: 8:64 80, 8, 64 800, 80, 64 10, 10 800, 80, 64 10, 10 ÍDD note, there are 2 PRGis on level i of tree. # Hybrids: 1+2+2+ ...+2-1 \mathbb{Z} ≥ 2 - 1. ° This is a preoblem...

Now, we'll construct & an adversary for the PRG game against G: B. sample w tsth2, ..., 2-y chal re (for GI) eg w=2 : sample s, <\$ 5. (1)Similate Similate Soo, Soi D xi A A use this tree to answer A's queries on X, X2 \leftarrow Output A's output : Analysis of B's advantage : -By similar orgument as that for PRG poly construction,

PRGAAN(B,G) = [PM(NOB) - PN(NB)] $\frac{2}{3} \frac{1}{2} \frac{1}$ (skipped in class:) 2-1 Alro, In Exp O of B, B identically simulates Hj-1 j = « no benoitibred In Exp1 for B, it identically simulates Hj, conditioned on w=j. Let Pj : Probability that A outputs I in Hj. Then, PRGRAdv [B, G] = 1 $p_0 + p_1 + P_2 - 2$ 2 - 1 $p_0 + p_1 + P_2 - 2$ $-p_1 + \dots + P_2 - 2$ $= \int pRFA dv (A, F].$ $2^{2-1} \wedge 2^{2-1}$

ESSUR: Recall, l= A. Even if PRFAdv (A, F) is non-negligible, B's advantage is still regligible! => This proves NOTHING about F's security 05

SOLN: Note, A is Q-query bounded, where Q= poly(N). ie: 3 only needs to simulate PRGIS in the paths of these Q queries => There will be more & such PRGs in each level. 3) Just need l. a englandes!! Full proof in book (Sec. 4.6) Symmetric Crypto - Summary : Ment Gil BMSY GibMSY LR88 Jaco OWF PRG1+1 PRG1+poly PRF PRP/ Block By defer Truncate Deterministic Lemma Liphen: Counter Mode. PRF but a permutation