

Outline

- · Review
- · BCs
- · Fiestel Networks
- · construction

Review !

Def: A deterministic, efficient algorithm $F: K \times X \rightarrow Y$ is ^a PRF if for all efficient adversaries ^A ,

$$
PRFod_V[A, F] \leq negl(\lambda)
$$

 $Exp b \in \{0, 13:$

$$
\begin{array}{|l|l|}\n\hline\n\therefore & \text{C} \land \text{C} \\
\hline\n\text{C} \land \text{C} \land \text{C} \\
\hline\n\text{D} \land \text{C} \land \text{C} \land \text{C} \land \text{C} \\
\hline\n\text{D} \land \text{C} \land \text{C} \land \text{C} \land \text{C}\n\end{array}\n\qquad\n\begin{array}{|l|l|}\n\hline\n\text{C} \land \text{C} \\
\hline\n\text{D} \land \text{C} \land \text{C} \\
\hline\n\text{D} \land \text{C} \land \text{C} \land \text{C} \\
\hline\n\text{D} \land \text{C} \land \text{C} \land \text{C} \land \text{C} \\
\hline\n\text{D} \land \text{C} \land \text{C} \land \text{C} \land \text{C} \land \text{C} \land \text{C} \\
\hline\n\text{D} \land \text{C} \\
\hline\n\text{D} \land \text{C} \land
$$

For
$$
b \in \{0,1\}
$$
, W_b is the event that A outputs 1 in Exp b.
\nPRFadv [A,F] := $|Pr[W_a] - Pr[W_a]$
\nA is called Q-quev if A issues at most Q queries.
\n $\frac{Block Ciphers}{E: k \times X \rightarrow X, D: k \times X \rightarrow X}$ such that
\n \odot - For any $k \in K$, E(k,.) is a permutation on X
\nand D(k, .) is it's inverse.
\nE is a pseudorandom permutation.
\n Det is almost identical to a pseudorandom function
\nexcept now:
\n \vdots E: $k \times X \rightarrow X$ is a permutation
\n \therefore E: $k \times X \rightarrow X$ is a permutation
\n \therefore E: $k \times X \rightarrow X$ is a permutation
\n \therefore E: $k \times X \rightarrow X$ is a permutation
\n \therefore E: $k \times X \rightarrow X$ is a permutation
\n \therefore E: $k \times X \rightarrow X$ is a permutation
\n \therefore E: $k \times X \rightarrow X$ is a permutation
\n \therefore E: $k \times X \rightarrow X$ is a new distribution
\n \therefore E: $k \times X \rightarrow X$ is a new distribution
\n \therefore E: $\bigcup_{k=1}^{n} x_k$ is a new distribution.
\n $\text{for all } k \in \{0, 1\}$ is a binary function.
\n $\text{for all } k \in \{1, 2\}$ is a new distribution.
\n $\text{for all } k \in \{2, 3\}$

Thus, to show (E,D) is a Blackcipher, it suffices to show E is just a PRF rather than a PRP. show E is
Intuitively, for large χ , it should be hard to distinguish ^a random Function from ^a random permutation.

Feistel Network

Ultimately , we want to construct a block cipher from a PRF . But , how would you even construct a permutation from a function ?

12 Feistal Permutation I

Let $f: \mathcal{X} \rightarrow$ $\rightarrow \chi$ be a function. Then,

$$
\pi(\mu, \nu) := (\nu, \mu \oplus f(\nu))
$$

$$
\pi^{-1}(x, y) := (\gamma \oplus f(x), x)
$$

are permutions on x^2 and inverses.

$$
\pi^{-1}(\pi(\alpha, v)) = \pi^{-1}(v, u \oplus f(v))
$$

=
$$
((u \oplus f(v)) \oplus f(v), v)
$$

=
$$
(\alpha, v)
$$

Construction

Intuition : Replace the f in the fiestal permutation with F(K ,) where ^F is ^a PRF· Then , apply the fiestal permutation three times with distinct keys .

(Luby - Rackoff) Let ^F : K xX -> X be a PRF such that $|x| = \{0, 1\}^{\lambda}$ we will construct (E, p) $(Luby-Rockoff)$ Let
such that $|X| = 20,1$
where $E:K^3 \times X^2 \rightarrow$ \rightarrow χ^2 , $D:K^3 \times \chi^2 \rightarrow \chi^2$

 $E((k_{1}, k_{1}, k_{3}), (u, v))$ $D((k_{1}, k_{1}, k_{3}), (x, y))$ · $w \leftarrow w \oplus F(k_1)$ \lor) and is the set of \lor $w \leftarrow y \oplus F(K_{\zeta}, x)$ · $x \leftarrow V \oplus F(k_1, \omega)$ $v \leftarrow x \oplus F(k, w)$ · $y \leftarrow w \oplus F(k_z, x)$ $u \in W \oplus F(k_{1},v)$ Output (x, y) Output (u, v)

What goes wrong with only applying the permutation one or two times instead ?

Thm : If F is a PRF, then (E, D) is a Block Cipher . Road Map We'll do this. $1)$ Prove E is a PRF. 2) By the PRF Switching Lemma and 1) , CE , D) is a $black$ cipher. V

Lemma : ^E is a PRF

Consider an efficient PRF adversary ^A that makes at most Q queries. We will show PRFadu[A', E] \leq negl(λ). Conside
Q que
Step 1: Step 1: Simplifying the Adversay Claim: We can construct an adversay A's.t .
|
| · PRFadr LA, EJ = PRFadr LA', E] · $\widehat{\mathcal{P}}$ ^A always makes exactlyQ distinct queries . \circledast · A is efficient if ^A is efficient. Sketch: A' is a trivial wropper around ^A that . Keeps a table of distinct queries from A and responses. · Al forwards distinct queries to the challenger and simulates/forwards responses to A's queries. · inulates/rorivas responses to As queries.
If A makes less than Q queries, A vill make extra distinct queries until ^Q is reached.

We will proceed WLOG that the prior conditions (*) apply to A , since the advantage of A' is identical.

Step 2:	Sequuence of H y bridges
Intuition:	We can replace the PRF evaluations $F(K_1, \cdot)$, $F(K_2, \cdot)$
$F(K_3, \cdot)$ with truly random functions f_1, f_2, f_3 .	
Querying $(W_i \leftarrow W_i \oplus F(K_1, V_i)$	
W $(W_i \leftarrow W_i \oplus F(K_1, V_i)$	

$$
\begin{array}{ccc}\n\text{Querying} & \left(W_{i} \leftarrow U_{i} \oplus F(K_{1}, V_{i})\right) \\
\text{at} & \left\{\begin{array}{l} \mathbf{w}_{i} \leftarrow U_{i} \oplus F(K_{1}, V_{i})\right) \\
\mathbf{x}_{i} \leftarrow V_{i} \oplus F(K_{2}, W_{i})\n\end{array}\right\} \\
\text{Out} & \left(W_{i}, V_{i}\right) & \left\{\begin{array}{l} \mathbf{w}_{i} \leftarrow U_{i} \oplus f_{i}(W_{i}) \\
\mathbf{w}_{i}, V_{i}\right) & \left(W_{i} \leftarrow W_{i} \oplus f_{i}(W_{i})\n\end{array}\right\}\n\end{array}
$$

We can show with high probability that all the Wi's resulting from the queries are distinct. This will imply the x_j 's are random and independent. As ^a result, we can similarly show they are distinct with high probability. This will allow us to conclude that the y;'s are similaly randon, and
independent.

Proof : Overview

- ----
· Ganes 0, 1, 2, 3 are played between A and different challengers.
- · Game ^O Will correspond to Exp ⁰ and Game ³ will correspond to $Exp 1$ of the PRF game.
- · Let w_j be the event that A outputs 1 in Game j . p_j = $Pr[w_j]$
- · We will show for j= , . . ., ³. (Pr[W;> - $\mathcal{P}[\omega_{j-1}]\big| \leq \mathit{negl\cup\Delta}$.

$$
- Thus, PRFadv[A, E] = |Pr[W_{3}] - Pr[W_{0}]|
$$

$$
= |(P_{3} - P_{2}) + (P_{2} - P_{1}) + (P_{1} - P_{0})|
$$

$$
\leq |P_{3} - P_{2}| + |P_{1} - P_{1}| + |P_{1} - P_{0}|
$$

$$
\leq neg(C_{\lambda})
$$

Theorem: There exists an adversary B, just as efficient as A, such that $|Pr[w_1] - Pr[w_d] | = 3 \cdot PRF_{adv}[B, F]$

Exercise : See if you can show this !

Hint : Construct ^a PRF adversary against the 5-PRF .

<u>Game 2</u>: In this game, we will replace the challenger with an identical challenger called a faithful gnome such that

- $er P \sim P \sim [W, J$ (i.e. the chal behaves identically)
- . We can reason more explicitly about the randomness used.

$$
f_1 \leftarrow
$$
 Fums[X, χ]\n $X_1, \ldots, X_{\alpha} \leftarrow \chi$ \n $Y_1, \ldots, Y_{\alpha} \leftarrow \chi$ \n $Y_1, \ldots, Y_{\alpha} \leftarrow \chi$ \n \vdots \n

<u>Game 3</u>: In this game, the challenger will be identical to the Game ² chal , except we remove the consistency checks *****. This is referred to as the "forgetful gnome." f, \leqslant Funs [\times , \times] \cdot Receive (u_1,v_1) $(f_{\alpha}$ i=1,...,Q) $X_1, \ldots, X_Q \in \mathcal{X}$ X_1 , ..., $X_{\alpha} \leq \chi$
 X_1 , ..., $X_{\alpha} \leq \chi$
 $W_i \in W_i \oplus f_1(V_1)$ γ , ..., $\gamma_{\mathsf{G}} \in \chi$ $X_i^{\prime} \leftarrow X_i \leq$ A.

Me, the

except we

ferred to
 $,v_i$) (far i=
 $\oplus f_1(v_1)$

i
 $\oplus x_i'$
 \longleftarrow $x_i \in v_i \oplus x_i'$ - no consistency $w_i \in u_i \oplus f_i(v_i)$
 $x_i' \in X_i$
 $x_i \in v_i \oplus x_i'$ no consist
 $y_i' \in Y_i$ checks $y_i \leftarrow w_i \oplus y_i'$ Send (x_i, y_i) to A.

Intuition: If no collisions occur, then these challengers will behave identically ; hence , an adversary would behave the same. We will show collisions rarely occur.

 $\frac{p_{rob}+p_{1}+p_{2}}{p_{2}}$: When comparing $Pr[W_{3}]$ and $Pr[W_{2}]$, We must be careful to ensure theyore over the same probability space . The following random variables determine the probability space · Coins : randomness of the adversary · Coins: rondomness of the adversory
5, $X_1, ..., X_{Q}$, $Y_1, ..., Y_{Q}$: randomness of the challenger <u>Claim 1</u>: In game 3, Coins, f_1 , x_1 , y_1 , .., $x_{\mathbb{Q}}$, $y_{\mathbb{Q}}$ are mutually independent. <u>Proof Sketch</u>: Observe, by construction, that the random variables Coins , ,
<u>Ketch</u>:
S, X, , Y_1 , X_{ω} , Y_{ϖ} are mutually independent. · Condition on fixed values for (Coins , ^F .) , the first query (μ, ν) on on fixed values for (Coins, f.), the first query
,) and w, are fixed. However, (X,, Y,) are uniform and ind in the conditioned space Hence, (x_1, y_1) are also. Then, conditioned on (Coins, f,, x_1, y_1), (u_2, v_2, w_2) are fixed, but $(X, , Y_1)$ are uniform and independently distributed.

· Claim follows by *in*duction.

Collision Events:

\n
$$
\frac{1}{2}
$$
: event where $w_i = w_i$ for some $i \neq j$ \n $\therefore Z_1$: event where $w_i = w_i$ for some $i \neq j$ \n $\therefore Z_i = Z_1 \vee Z_2$ \nClaim 2: $W_2 \wedge \overline{Z}$ occurs if and only if $W_2 \wedge \overline{Z}$

\nProof Sketch: For fixed values of coins, f_1 , X_1, \ldots, X_{α} , Y_1, \ldots, Y_{α}

\nsuch that \overline{Z} does not occur, we can show the sequence of queries (w_i, v_i) and regomes (x_i, y_i) are identical by induction.

\nIn particular, the consistency checks are never triggered.

\nWe will now show $[R[1w_3] - R_1[w_3] + R_2[w_3] \leq \log(1\lambda)$.

\n*Proof:* $[P_1[w_3] - P_1[w_2]] = [P_1[w_3 \wedge z] + P_1[w_3 \wedge \overline{z}] - P_1[w_2 \wedge \overline{z}]$

\n $= [P_1[w_2 \wedge z] - P_1[w_2 \wedge \overline{z}] - P_1[w_2 \wedge \overline{z}]$ \nBy claim 1) and union bound, $R_1(Z_2) = P_1(Z_1) + P_1(Z_2)$

\nBy claim 1) and union bound, $R_2 = \frac{Q^2}{2} \cdot \frac{1}{|X|}$.

\nConsider any fixed pair of indices $i \neq j$.

\nSuppose $V_i = V_j$: Since A only makes distinct queries, we must have $u_i \neq u_j$; Thus, $w_i \neq w_j$.

Suppose $v_i \neq v_j$?	By $c(\omega_i m 1, f_i(v_i))$ and $f_i(v_j)$
are uniformly and independently distributed π in a conditioning space	
$\rho_r [u_i \oplus f_i(v_i) = u_j \oplus f_i(v_j)]$	over fixed values
$= \rho_r [u_i \oplus u_j = f_i(v_i) \oplus f_i(v_j)]$	over fixed values
$= \frac{1}{ x }$	

Thus , $Pr[W_i = w_i] \leq \frac{1}{N}$ and $Pr[\mathcal{Z}_i] \leq \frac{\alpha^2}{2}$. by union bound. Therefore , $\begin{bmatrix} 1 & Lw_1 & Lw_2 & Lw_1 & Lw_2 & Lw_1 \\ 0 & 0 & 0 & Lw_1 & Lw_2 & Lw_1 \\ 0 & 0 & 0 & 0 & Lw_1 & Lw_1 \end{bmatrix}$ Finally , in summary ,

Finally, in summary,
\n
$$
PRFadv[A, E] \le 3. PRFadv[B, F] + \frac{Q^2}{|X|} \le neg(\lambda)
$$

\n \uparrow
\n $Reg(\lambda)$
\n $Reg(\lambda)$
\n $Reg(\lambda)$
\n $Reg(\lambda)$