
--J

((5(1)

SAN 3 CLE

~↓(7) L

https://goodnotes.com/

Oi
- Commitments

- Motivation
- Definition
- Example : Pedersen Commitments

- Random Oracle Model
- Simple Commitment Scheme from Hash Function
- Intuition
- Formalization
- Example : Simple PRF

a mentScheme Motivating Example :

- Alice and Bob want to "flip a coin"
over the phone

tempt#1 :

Alice Bob
1. Alice flips coin

and gets b

2 .Alice sends b to Bob
->

Alice outputs b Bob outputs b

Problem : What if Bob doesn't trust Alice?

1 . Flips

https://goodnotes.com/

tempt#2 :

Alice Bob
1 .
Alice flips coin

and gets ba

2. Alice locks ba in box

-
3. Alice sends locked
box to Bob

-
4

.
Bob flips coin
and gets bi

Sobsends b to Alice

6.

Alice sends key to Bob
-

Alice outputs ba b Bob outputs & by

Claim :bab is random if at least / party is honest

Why?
1) If Alice honest , ba is uniformly random .

Bob knows

nothing about ba when choosing biba and by are independent
=> Da ⑦ bi is also uni formly random
2) If Bob honest , bis is uniformly random. Alice can't

change ba - ba and b are independent -> be b uniformly random

https://goodnotes.com/

itmentschemes

Intuition :Cryptographic opaque locked box

Formally : a pair of algorithmsT= (Setup, Commit)
- Setup(1) PP

takes security parameter as input and
outputs public parameters

- Commit (pp ,
m

, r) -> C

takes public parameters as input , a message
m from the message spaceM,

and

randomness r from randomness space R
and outputs a commitment in commitment

space C

wokey Properties :

-
commitments hide the messageHiding:

can't see thrown the box"you I
m

,
mi -M

& Commit (m
,
r) : ~R3 = &Commit (m,

r): R3
-

- perfect : distributions same

- statistical : statistical distance negligible
- computational : no efficient distinguisher

Bind Iingi no efficient adversary can produce m
,
mi, r,
r

-
such that Commit (m ,

r) = Commit (m)
, r)

"Only one value locked in the box 1

PPT A

Pr [Commit (m,
r) = Commit (mir) : (m

,
r

,
mir) A(p)] = I1(m

,
r) = (m)

,
r)

M
neg

computational

https://goodnotes.com/

senCommitments

Constructiot of prime order p generated bya
We assume the discrete log problem is hard in G :

↳ iven (6
, p, g , gy) for a uniformly randomI

x D , it is infeasible to computexI

Discrete-Log Security Game (formal)

Adversary A Challenger-

-Pgin
X'
->

↳ A wins when X = X
I

D-log assumption : all PPTadversaries
win wh only negligible probabilitY

M =

p ,
R =

p ,
2 = G

Commitment Scheme :
-

Setup (14) :

-sample G
- output (G, p , g , h)

Commit ((G. p . g ,
4)

, m) :

- r p
- output gahr

https://goodnotes.com/

AnalystlyHiding
,
consider the distributionone

& Commit (m, r) :R = gmh : ~R3
unif . rand = h" is unif rand = gah is uniferr is and

=> distribution is independent of m

2) Computational B indingy
I prove binding, hardness -> binding .

- we show d-logdPf
.

We assume we have an

that can break binding versaryawl non-negl~

probability p . We then show thatwe can use

A to build adversary B that wins D-log game .

B simultaneously plays the role of adversary in the D-log
game and challenger in the Pedersen binding game
Life Advice : to break d-log , get two different---

representations of a group element
For example :

guhrgggr=gmgargr= gmir
a

v- U

PedersenBinding Security Game Pf.
A (Binding B -hallenger- adversary) - D-log

IgX -

gin -hey
Magic'

m ,
m

,
r

,
r

->

9-h
=gr

M + M

useeadvice
!
=

X

Pr[x' = x] = P which istnegligible !

https://goodnotes.com/

Pedersen commitments are homomorphic
Commit (m,

r) . Commit (mir) = gungmihre
= g
= Commit (m+m

,
r + r)

... butare there simpler commitment schemes??

YES !!
Hash-based commitments !

... but how to prove security?

We need the RANDOM ORACLE MODEL

=>

https://goodnotes.com/

Random Oracle Model * controversial
-

Reasoning about security of hash functions is hard ->

instead of reasoning about hash directly ,
treat hash

function H as a random function
H : x - - defined by H - a random element ofy

-> agrees wh common intuition for hash functions
-> pervasive in cryptographic implementations

Consider simple commitment with hash H modeled as random function:

Commit (m
, r) : = (

,
r)

- hiding : It's output is uniformly random
- binding : breaking binding finding
(m

,
r) (mi

,
r) such that

requires
H(m

,
r) = H(m! r)

,

a collision
,
which is hard for a random

function
Q : Is H(m) a commitment ? Or gm?

No ! m may have insufficient entropy

Elegant but some questions :

* why a "model" not an assumption ?
* how can we formalize this?

Why a model ?

Cryptography is epistemologically) part of mathematics .

We model theworld and prove theorems within the
model.
↳ Our proofs so far have been in the standard model

· weak assumptions
↳ Now we'll see the random oracle model

· a stronger assumption : "all parties have Oracle
access to H

,
a random function , sampled at

start-up
7)

Weakness : in our implementations ,
we do not

Sample H the model isa ?

"all models are wrong ; some are useful
"

https://goodnotes.com/

How to formalize ?
- let HiX- be a function (i

.e. the random oracle)Y
~ all parties have access to an oracle that samples H

Oracle
H= Funs [x ,y]
- x xXH(x)
x
(x(x)

Adversary Challenger
↳ in security game proof, adversary sends RO
queries to challenger

Security Game Pf in RO Model EH
Adv A Challenger 000

game query->

ameresponse
Jo

query R
Oresponse

↳ Challenger's responses must
be to a random function
↳ Ex : for each adversary query H(m),

C sets H(m) - and~
$

y
remembers previous answers

https://goodnotes.com/

Proofin RO Model

<PRF Securit Game for ↑ KXM-y that uses R.

O
.
H-

S

-

AY Challen (b)Adversary ger-
-

K-
I

f & m? If=0 fEFLa
->

#jo
H & m?
->

Jo
b'
->

Let Wo be the event that A outputs 1 when b= 0
,

1
.

As advantage with respect to F is PRFadv [A
, F] :=

1 Pr[wo] - Pr[W]I
.

A PRF F is secure if for all
efficient adversaries

,
PREadv [A

,
F] is negligible

Now let's use this definition to prove security of
a specific hash-based PRF !

The PRF : f (k
,
x) = H(x)"

I
H : X -> G

Claim : Secure in RO model assuming DDH

Decisional Diffie - Helman (DDH) Assumption :

for group of order of with nevator gi
V

· I $
ge

&(g, g gxy)
-

/
, y

-Eg3 , Elg *, gr, g4 : x , y ,
z23

↓ ↓
"DBH triple" "random triple"

https://goodnotes.com/

DDH Security Game

AdversaryB Challenger (b)-

1$X , y ,
2 - Eq

if b = 0, X = g
Y

, y = gl S = g
xy

X , y ,
z else X =g, y = gr , Z= g2

D
->

Let Wo be the event B outputs 1 for b= 0
,

1
. B's advantage

in solving DDH for G is DDHadv[B ,
G] : = /Pr [Wo] - Pr[Wil

&we say the DDH assumption holds for G if for all
efficient adversaries B the quantity DDHadv [B, G]
is negligible

We will prove that if there exists an adversary A who
breaks our PRF

,
then we can build an adversary B who

uses A to break DDH
,

Just as before
, B simultaneously

plays the role of challenger in the PRF security
game

and adversary in the DDH game.
RO

A (PREadversary) B DChallenger)-

$
< I

gx
,y ,

2 -

xyif b=0, =g, y =gl=g&

ill,2 else : X=% ,

= go, z=

g
Z

f & m?

s
m

-
t Magically determine
if interacting with

PRF or random function ↳

https://goodnotes.com/

*B has to convince A it is interacting with a

"real" PRF challenger -> its query answers

must be indistinguishable from answers from
"real" PRF challenger.
Trick : B doesn't use RO-it just pretends to !

PHAdversary B (p ,
X

, y , 2)
↳ B maintains map H to keep track of
simulated RO values for consis tency

↳ To answer H & m queries :

- If me :H ~
indistinguishable from$ random

- x - qu V

- Set H(m) = (X! x)S

- Send H(m)[O]
↳ To answer f & m queries :

- If m Hi
↳- x - g

- Set H(m) -(X,
x)

-a= H(m)[1]
- Send 2 If b= 1

,
then this is PRF where

y is secret key !

Note :

if b = 0

if b = 1
,

S ==gyXMLthe PR,

random !

Ergo , guessing PRF vs
.

random is equivalent to
sing DDH triple

vs
.

random triple !gues
=> B and A have the same advantage !
=> if A can break PRF security ,

then
B can break DDH assumption

https://goodnotes.com/

nghtsand comments Model

- a heuristic model that seems to work well
in reality and gives simpler/faster schemes

than we have in the standard model

- in applications ,
we replace RO witha specific

nash function ->pretty pervasive in implemented
crypto

- there are some (contrived) schemes that are

secure in RO model but insecure in standard
model no matter what hash function is used

- some people especially don't like this "dirty trick"
of programming an RO-how is it connected to

reality ??

- we lat Stanford) tend to be RO-friendly

Instantiation
- do not use Merkle - Damgard hash like SHA256
- SHA3 (sponge-based) or

- SHA2
, carefully padded

https://goodnotes.com/

