
-ptanalyses Lec6 (Apr 1812024)
Last Lecture :

-

Coppersmith's Attack : Infineon

"optimized Keygen"= Broken Security .

Today :
-

* How hard is Discrete Log ?

(1) Generic attacks :

(2) Blog in Integer groups.
-

- -
-

-

The blog problem : prime
I

Given a cyclic groupMr of order p,
generated by g ,

and

Gena uniformlyranse group
he G

, find ne Ip sit

h = gu generator of I
&

i
. e. Find blog of h ,

in base g

((= <gy = <g , g ..,g)
Inotation! (

Fundamental assumption inCrypto :
-

7 groups where blog is "Hard"
, i. e.

↓ efficient adversaries A ,

exp(X)

(Pr(A(gt) = x =
k

, g , p = Setup
114

X $
. Ep. negr()

"no efficient adv . can solve blog with non-negl . Prob
e.g . DDH hardness relies on Dlog Hardness
But, is Blog actually hard for the

-

ce !groups used in prach

We'd like concrete security bounds !
Lets see some generic algorithms to
solve Blog : ·

Can be used to solve plog
in Anyyclic group.

① (warm up) Naive algorithm :-

Brute force : Tryall possible values of X :

For i = 0
,

1, . . ., p- ,[is h= gi , olp i].
Time : p

I assuming exponentiation
is0.

Success probability : I
Finds Blog(E

Space : O(1?
(forall postea ne

We can make this faster by trading-off
success probability :

/For i = 0
,

1, ...,
t - 1

& 3if h= gi , op i

Time : t

Space : 0 (1)
Success Probability : It
will only &
work for enedg, ..., gt-1].

② collision-based : -

Skippedine(
Recall Pedersen commitments :

com(m) : res Ep ,
op gar

we proved that an adversary that
breaks binding , solves dlog of h

Lets use this to build an algorithm :
-

M = 1
.

: key-value map
For i = 1

,
2

, ..., :I sample mi
,

ri $ Zo
ri ri is rj

of guie EM ; i . e . gui h = G h

and mitm j for some j<

of (ri-rj)
.

-

(mj -mj)

o . w . M z Mv/guin ,
(mi!

OIP t
-

mi pri = gmi r*. If g then,

mj-mi ri-rj

g
= h

my
i

. e. h =

g
m

So
, if a collision is found

,
we op

the correct blog.
Time : OIt?
Space : Ot : need to stone all the

migri values-g

Success probability ;

For each is Prob . that we find a

collision z

t

Total : E ↳

(this is basically the Birthday Bound)

* If we set t= (p)
,

we can get

constant success probability ,
but then

,

both time
, space will be (5) !!!

-

LARGE·

⑤ Baby-Step Giant-Step Algo :

Let h= gH ,
where ut do ,

1
,
2

, --., p-M.
A

Mani Idea : x = 1. +5 for
M &

some i , j in 201 ..., p
=13

So, we can search for i, separately.
"GIANT STEPS"

Step 1 : -I 21
-

T 2
compute Ego , g , g %... gir..I for i do ...-

E
.

store a map M : key : giv, value : it
-

step?:
covers all possible values

of i

"BABY STEPS"
11 M

For j indo ,
1

, ..., -13.

26 E is in M.

then
, output i + MTe/gi]

OIP ↓

T eM means that h = g
i
for

gj gi

I some i ,
i. e . higsti .

i. e. Iwe're found i, and ne it is
z

- M(h/g))

Time: 0.) + 0M)
. /Enough-

Step1 ↓
step 2

-

LARGE
o

T

Space : 02) : need to store M !
Success probability ; 1-

↓

be we know , exist st .

n = j + iP.

-
mewe can again reduce I by trading-off

success probability :

Restrict is s to so, ...,
t-1% in

steps 1 and S

Then
,
Time : Oft) Ignoring log 3factors

Space : Oft)

Success probability : It will work only
if n E50

,

1
, ...,

the
,

so
, E
P

(because chosenunforma& Zp &

So far ,
we've seen 3 different

algos :

Time Space Success
Prob &

Naive : t 1 tp .

Collision-based : t t /p .

BSGS " t t t2/p &

can we do better in terms of space?

① Pollard'sPho Algorithm :

* Idea : Do a random walk in Dr
Then find a cycle

Lets say we sample do
, bo $ Ep .

90 b0 . Random
h - u = f(ud)

-40 =

g transition
= gyb

"Random walk in &" ↓

Using a function f .. 12 =f(ui)U

ui = f(u ,-) ----- = gara&
t t

Ot ebt .

= g

-

2 we find a cycle ,
i. e . i

, I s .t

ar bi
ui = uj ,

i . e . g
en = gabi

then
, x

=
C

.

This is a different take on the)collision finding algo

For this algo ,
we need :

↳ A "random" looking function f
2) An. efficient cycle-finding algo.

Lets start with E):

Naive : Just store No
,
41 --in amap

and check if U = U; for some jai-

I similar to collision-finding algo).
Issue : This uses too much space !

COIN.: Floyd's tortoise I have algo :
011 space !!

Given : a sequence X1
,
X = f(x1) , 43= +(x2) ...[Find a collision

,
i. e .< jo at Xi = Xj.

-) find a cycle Xit = Xit ,
and so on .

Lets say the sequence has a cycle of
length C -

& *ex
f 5 I X- X
X -X21 ...

T

M Xe+z

f)
[f(Xexc-) = Xe]

.

Xete-
-

i.e. Xetc = Xe = Xetze ...

Fio
9

In general, Xeti = XetitcR Ro ·

Spen 'cally ,
Let I be the smallest indesfr

7, 9 that is a multiple of C.

i

- 2 , = R - c I for some R

Then
, Ma = Mitc =.... = Rick

-> M =

2
mu

↳ This is the collision
that Floyd's algo finds, in Low

SPACE-

Formally :
Let to = No = Go

For i= 1
,
2,

2 Tortoise
ti = f(ti-1)

-

Harl
-

hi = f (f (hi-1) L collision found
!

&

-L

2 ti =hi : ap (thi ,
i)

&

For i=1 : comparing Me us &2
For i= 2 : 11 12 us up and so on...

space : O(1) : Just & pointers !!

This finds a cycle if it exists
.

E

Time : of length of sequence)

success probability :

But
,
what is the probability that the

squence No
,
U1

, 42. --

has a yell ?

If o is pseudo-random ,
then,

same as in
By Birthday Bound 3 & analysis of Scollision finding[uo

,
ux ----

> UzY I
Y algo

has collision probability-
eso

, assuming of is pseudo-random,
we get

Time : o It)

Space :Ma
Success :&probability

Back to 1) A pseudo-random of :

Option (iz : use a Hash function ? Ie . f=H
i

. e. ui = H(ui-1)
ai-1

gai
bi ↳ gai e

Issue :

we won't know ai
,
bi --

S But wa need them for computing 3blog !

*Solution : splitI into random T

* disjoint subsets : X

- -

Important for
G = So U SgU Ser f to look

random .

20

g enzb it ut So
- (x - gnz) = &ga+ n it i =s

ga not if no Sei
↑

Pull-ug 1) and 27 together :

-
go bo

I Sample do
,
bo $*p .

Let uo =

& er

and vo = No .

↳ Tortoise

↳ Hare

For i = 1
,
2

,
. .

. .: Lets
assume ,

f also
gives

ti : (ai
,
bi

,
u.) = f(ui -1) #I corresponding

the bi
ai ,hi : Cazi

,bri ,Vl = f (f (vi-1)). values. --

collision found ,

-2

& Ui = Vi and bitbzi :

op I-

op Ha !Cbzi

-

Time : oft)

Space : 0(1)
Success Prob :~

E

we've seen 4 generic algon
-

thms,

3 have success prob .
th for
-

P
runtime t

Turns out
S
this is an upper

bound !

Shoup197 :

The success probability of ANY

generic blog algorithm running in

time t is bounded by th
P

Mollary : Any generic blog algo.

requires -(p) group operations
to get non-negligible success prob.

Aso , Random Collision-based BSGS,
Pollard's Reand are all

--
time optimal

(ignoring log factors)

*Pollard's Rho is space optimal !

The bound is based on the

Generic Group Model (GGM)
.

:

[
A model where the odr is not]allowed to learn anything about
the specific group structure.

The & algos we've seen work for
Any group ,

e.

g
. integer groups.

But
,
we'll now see a non-generic

blog algorithm ,
that works only

for Integer Groups :

⑤ Index Calculus :

consider an integer group for
prime q

Lets say , 9
- &
*

(exponential)sized group

Then , for non-negligible success prob
Trivial Algo (1) : Time ~ 2x

x/2
Algos (2)-(4) : Time - = S

- still exponential time.

Index Calculus : sub-exponential time,

i. e . #(S
**) for < 1

.

CX(skipped in class (S .
+)

.

-

/Warmup : consider group Eg with +
operation.

Elements : 20
.
1
,

. .
. .

, 9-13.

Group operation ; a
,
b + (a+b) % &.

blog problem : given g ,
he Rg,

find a sit g + gt -.. + g = h %S
-

u times

Easy to solve ! U = h -Xg.

then
, g+ g - --+ g = hy.g

G I
-

IndexCalculus : for (Tg*, *
i

-e- group operation : product

Elements : 21 ,
2

, --., q-17 .

Assume that q-l = Sp for prime p.
ie

, & is a "safe Prime" and

ord(g) is p . (Note , Dog will

*
· Ifa were not safe,

be trivial if[
.

3 3
blog would be less Hard. ord(g) were G

Tupdated on Apr 22) .

M

Let I be the generator of Z
&

1. It exists be is a cyclic group2for primeq.

i . e. Z = < ..
Let R = <g .

*

IZ = q-1 , 1) = D..

= Ca-D/2 .

2 q-exp(X) , prexp(X) . one would
expect blog to be hard in Kr But,
we can use Index calculus :-

I . We'll first solve blog wat g
i
. e - given h , find bloggh

It .
We can then compute loggh as follows :-

g = (g)2 -

nyx (X = loggh) .
so if h=(g
then

,i = (g)
*

= (2x12.
hso

, loggh = I logg
128 loggh is not even

,
then

,
hisSNOT in the p-sized subgroup.

we'll new see the algo - to compute.

leggen -

Ralgorithm : - (for (E ,*)
step ↑

1) Let 1= E2 ,
3

,
5, . .

. -

, pay be

all primes <B . A parameter ,

to be set later.

I will be our 'factorization basis"

e.g . for B = 6
,

L= 22
,
3

,
5%

120 = 23 . 3 . 5 can be factored in
La

ya = 72 cannot

A number is B-smooth is all its
prime factors are B.

i
. e . 180 is J-smooth

,
49 is not

step

2) Compute loggpi for all it It].
Iwe'll see how later) ↳

now ,
we can find blog

Step3.) r = 0
of Any B-smooth number.

[ht is NOT B-SMOOTH :

Step3 . 1) :
WHILE

rE$
. q

i . e, Find a value r st

-
factors in B

,
ie-eng

ei

her =D pi
ift]

I zar -3
ez

-33
·

- - Gejet
Lets take log base of on both

sides :-

logen + r = eix(loggpi)g it[t]

= logge = -r + Zeix(loggpi)it [t]
↑

(we computed these in Step2)
Step 3 -2) factorize high in L ,

i . e . find ei.

* Output -r t E ei + (logg pi) I
it it] .

-

How efficient is step (3) ?

" How many r values do we need to
↑

sample until high is smooth
MATH FACT 1: There are N B-smooth
--

i

numbers[N
,
where U=N -

logB
CN is a for us?

So
,
Pr random number = -[Jin is B-smooth uU

so , in expectation ,
we'll need to try

u4 different values of r.

his How much work do we do for each
value ofr sampled?

we try to factorize high with basis
L . toY C .

check if its B-smooth
.)

MATH FACT 2 : There are E primes--

logB
&B . => 12) =2 Casymptotic)

logB .

so
,
to factorize high with basis L:

~ Try dividing by each prime in L

+ Polylog (3)

4

↓ ↓

It primes in L Time to divide

= (B)
.

so, total runtime of (u" - B)Step (3) :

Back to Step (2) :

How to compute loggpi XpieL?
⑧

Sample r, StI factors in B.

Ce .g . by
&

a while loop,running
tep (3) ?like S

e
i . e. = i pi

it[t]

& M - e * logapi ---()
2 W g-

known known (by factoringM in L
.)

Think of each logpi as a variable Xi

Then
,
(1) is a linear equation in EX,%.

There aret variables
,
so if we can

--

get tqquations , we could solve for
&Xi] -

Formally :

Step (2 .1) :

For it (1 , 2 ,
- ..,
th:

Mi =

o gariwhile does not factor in L
ris

. q

=> so ,
we'll get t equations : -

r = ze" Ri (ie.
M
= pi)icft]

M2 = ze . ni (i . e .gr
Y

"

Mt = Edi (i . e.

=

ifft] ig = ↑ Pi

*Since we sample Mirandomly ,
w .h .p

-

we'll get t independent ens .

-Sep 2.2 : solve the linear system of eque !

so we'll get Ni = loggpi for all it It].

Efficiency of Step 2 :

By Math fact (27 ,
t= = 11

.

logB
Expected

↑*
*polylogFor each it lt] : W (# -↳ time-

↓ logB
fr

times we'll Time to factorize
#

sample ri until gri in L
gri factors in L

Time for each t
t -
-

So
, Step 2.1 : ↳ A u * B- time.

logB
BStep 2 -2 : solving linear system:

(?so
, step 2 total : 1. M+
Step 1 + Step 2 + Step3 :

L ~ [B3 .+ uY . B2) [[sgnoringetars]
Recall ,

u=3.(↑

-logg · loglog I
If we set B =

e
&

-then, logB- logg - leglog I

U = 189
IElog B loglogg

(skipped in class)
-

! u = Celos)" = exp(ulogu)

-ep go g)-
- ex)

.

-Clogg : loglogy

-expoglog) = B !
-

ie u4 & B .

-
-

T (B3)
.

Overall time : 0

where B = expl-logg - loglog)

Notation ;

↳[C , c) = expl
.

2 (logn)
? Chogrogn)'2)

so
,
Runtime : (2) B = Laka))I

- (a) 4) ·

of q-2t ,
then,

the above algo has runtime :

exp)3.x(: 0(2)
- Sub-exponential Algo

for blog in Integer groups ??

Best known blog attack : L (t , 2)
i
.
2 . exp(2 . (logq(

*3
. (leglog(213)

Zulusions:

* Sub-exp . Blog algo. for integer groups !

Implication : Lets
say we

want 128-bit

security.
i. e. Solving plog should take time &128

for integer groups : We'll have to

2018

set qu 2 to get -122bit security :
Runtime of best Blog algo.

-213

(want exp (2 (loggs?? (logleg 2) & LI 2122
↑Al -

2018) securityC: This givesq-S level .

i.e. If we want to rely on Blog
hardness

,
and have 128-bit

security &
we'll have to us VERY

LARGE Enteger groups !!

* WE need to use BETTER blog
groups !

Ie where ideally , there is noI blog algorithm better than Cthe garhic algorithms.

(which are exponential time)

