Lec 6 (Apr 18 2024) Cryptanalyses Last lecture: Copperismiter's Attack : Infineon. "optimized Keygen" => Broken Security Today ! * How erard is Discrete Log ? (1) Generic attacks: (2) Diog in Integer groups. prime The Dlog problem: Griven a cyclic group by of order p, generated by g, and Griven a uniformly random group element h c bi, find n e Zp s. t. h= gr generator of bi i.e. Find Dlog of h, in base g. $\begin{pmatrix} G_1 = \langle g_7 = \langle g^0, g', \dots, g^{-1} \rangle \\ (notation') \end{pmatrix}$

Fundamental assumption in Crypto: 3 groups where dog is "Hand", i.e + efficient adversaries A, $Pr(A(g^{\chi}) = \chi : G_1, g, p \leftarrow Setup(1^{\chi}))$ $\chi \leftarrow = \mathbb{Z}p$ $\leq negl(A)$ no efficient adv, can solve Dlog with non-negl. prob e.g. DDH hardness relies on Dlog Hardness But, is Mog actually hard for the groups used in practice? We'd like concrete security bounds) Lets see some generic algoriterns to solve DLog: Can be used to solve DLog in ANY cyclic group. (1.) (Warm up) Maire algorithm :-Brute force: Try all possible values of X: $\begin{bmatrix} for \quad i = 0 \\ il \quad h = g^{i}, \quad olp^{-i} \\ i \end{bmatrix}$ Time : p < assuming enponentiation is di Success Probability: 1 (finds Drog) (for all possible values of b) Space: O(1)

We can make this baster by toading-obb success probability? $\left[for \quad i = 0, 1, \dots, t-1, \\ ib \quad h = g^{i}, \quad o(P \quad i) \\ \end{array} \right]$ Time: t Success Probability: t will only & P work for nedge, ...,gt-'y Space: O(1) 2.) Collision - Based 3- (Skipped in Class) Recall Pedersen commitments. com (m): ret Zp, oll gn en we proved that an adversary that breaks binding, solves dlog of h. Lets use this to build an algorithm: M = 1 : Key-value map For C = 1, 2, ..., t : sample m_i , $q_i \in F \mathbb{Z}_{2j}$ $\Im f q^{m_i} q_i' \in M, i.e. q^{m_i} q_i' = q q_i'$ $\Im f q^{m_i} q_i' \in M, i.e. q^{m_i} q_i' = q q_i'$ and $m_i \neq m_j$ for some j < l,

Oll (Mi-Mi). $(m_j - m_j)$ $0: \omega \cdot M \leftarrow M \cup \left\{ \left(g^{mi} e^{mi}, (m_i, y_{i'}) \right)^2 \right\}$ * If qu'h' = qu's h's, then $m_{j}-m_{1}$ $q_{1}-m_{j}$ q_{j} i.e. $h = q \frac{m_i - m_i'}{m_i - m_j'}$ So, if a collision is found, we Off the correct plog. $\Theta(t)$ Time: Space: O(t): need to store all the g h values. Success prebability: For each i, brob that we find a $z = \frac{(l-l)}{2}$ collision Total: $\mathcal{Z}(\dot{\iota}-\iota) \sim t^2$ $\dot{\iota}=\iota P P$

(this is basically the Birthday Bound) * If we set t= n (Jp), we can get constant success probability, but then, both time, space will be $\Omega(Jp)!!!$ LARGE n. (3.) Baby-Step Griant-Step Algo: Let h=g¹, where n = do, 1, 2, ..., p-19 Main Idea: n= î.* Jp + 3 gor some i, 5 in do, 1, ..., Jp-1.9 & store a map M: key: gilp, value: ilp. Step 2: Covers all possible values

" BABY STEPS" For j in 20,1, ..., 5p - 13. If h is in M... then, output j + M[h (gi]

018 1

A E M means that n = give forgisome i, i.e. <math>n = gitisp i.e. we're found i, j and n = j + isp

Time: O(Jp) + O(Jp) [Ignoning] step 1 / step 2 [lag LARCHE] Space: O(Sp): need to store M! Success probability: 1. be we know i, j erreit s-t- x= j+i.Jp.

We can again reduce time by trading-off success probability: 20, __, t-13 in Restruct i, j to steps 1 and 2. Then, Time: O(t) (Ignoring log) Space: O(t) Space: O(t) Success probability: It will work only if $x \in \{0, 1, \ldots, t^2\}$, so, $\frac{t^2}{2}$ (because n is chosen uniformly) P (at random from Zp) seen 3 different So bar, we're algos: Time Space Success 1008 · Naire : t 1 tlp. f Collision-based: t t²/p. $t^2(p,$ BSGIS : t t

Can ve de better in terms of space? (4.) Polland's Rho Algorithm: \$ Idea: Do a random walk in G Then find a yell. Lets say we sample as bo ES Zp. Us = go ho Random Us = f(Us) =q'p'"Random walk in bi" Using a function f... $u_2 = f(u_1)$ $U_{i} = f(U_{i} - i) \leftarrow z = q^{2} q^{2}$ = g l If we find a cycle, i.e. i,j s.t. $U_j = U_j$, i.e. $g^{ai} e^{bi} = g^{aj} e^{bj}$ then, $x = a_j - a_i$ bi -bj (This is a different take on the) collision finding algo.

For this algo, we need :) A "reandom" looping function of 2) An efficient cycle - finding algo. Lets start with 2.): Naive 3 Just store 10, 11, ... in a map and check if U; = U's for some j<i (similar to collision - finding algo), Issue: This uses too much space! SOLN: Flagd's tortaise & have algo: $\int G(x) exists a \qquad \text{Sequence } X_1, X_2 = f(X_1), X_3 = f(X_2) \dots$ Find a collision, i.e. i 7 j. s. t. Xi = Xj. Find a well? Xi+i = Xj+i, and so on. Leto say the sequence has a cycle of length c : $x_{1} + z_{2} + z_{2$ [f(Xe+c-i) = Xe] i-e. Xetc Xe = Xetze ···· IJ ¥i≥o, R≥o, In general, X_{l+i} = X_{l+i+C·R}

Specifically, Let i be the smallest index >2 that is a multiple of C. i.e. i=k.c. 7 l for some k. Then, $\chi_{\hat{i}} = \chi_{\hat{i}+c} = \dots = \chi_{\hat{i}+c\cdot k}$ = $\chi_{\hat{i}} = \chi_{\hat{i}\hat{i}}$ that Floyd's algo finds, in LOW SPACE. Formally: For i=1, 2, $t_i = f(t_{i-1}) \in Toutoise$ hi = f(f(hi-i)) / collision found! For i=1: comparing x_1 vs x_2 , For i=2: 11 x_2 vs x_4 and pa on... space: O(1): Just 2 pointers !!!! This finds a well if it exists. Time: O(lengter of sequence)

fuccess Probability: But, what is the probability that the sequence Us, 41, 42, has a cycle? 28 f is pseudo-random, teren, By Birdenday Bound, (Same as in avalysis of (Collision finding algo that collision probability $\sim \frac{t^2}{P}$. so, asserning f is pseudo-random, we get Time: O(t) Success ~ +2 Probability P Space: [0(1)) YAY Back to 1.) A pseudo-random f: Option (i): use a Happ function? i.e. f=H i.e. $u_i = H(u_{i-1})$ $g^{a_i} \in b_i$ $g^{a_i} \in b_i$

Issue: we won't know an bi ... (But we need them for computing) (DLog!

split & into random? * disjoint subsets : " Important for Solution GI = So U Sg U Sh f to look random. $f(u = g^{\alpha} k^{b}) =$ $\begin{cases}
q^{2a} h^{2b} & \text{if } u \in S_0 \\
q^{q+1} h^{b} & \text{if } u \in S_q \\
q^{q} h^{b+1} & \text{if } u \in S_q
\end{cases}$

Putting 1) and 2-) together: Sample as, bo = \$ Zp. Let up = go th > Tartaise and vo= uo. > Hare

Lets assume, for i=1,2,....t: f also gives the coverponding $ti \circ (a_i, b_i, u_i) = f(u_{i-1}) \leftarrow$ Oli, bi $h_{i} = (a_{2i}, b_{2i}, N_{i}) = f(f(N_{i-1}))$ values ...

If Ui = Vi and bi = bi : $olp(a_i - a_{2i})$ $(b_{2i} - b_i)$ 018 1. Time: O(t) Success Prob. : ~ t² P. Space: O(1) verire seen 4 generic algorithms, 3 have success prob. t^2 for runtime t: PTurns out, this is an upper bound! Shoup 197: The success probability of ANX generic DLog algorithm running in

time t is bounded by $\frac{t^2}{P}$. Corollary: Any generic Dlog algo. requires I (Sp.) group operations to get non-negligible success prob * 20, Random Collisión-based BSGS, and Pollard's RPro are all time aptimal, (ignoring log factors) * Pollard's Pho is space optimal 1 The bound is based on the Generic Group Model (GrM): A model where the add is not allowed to learn anything about the specific group structure.

The 4 algos we've seen work for Any group, e.g. integer groups. But, we'll now see a non-generic Mog algorithm, that works only for Integer Groups: (5) Index Calculus: Consider an integer group Zz for prime 2. lets say, q = 2¹ (exponential sized group) Then, for non-negligible success prob., Trunial Algo (1) ! Time - 21 Algos (2) - (4): Time $\sim \int g^{1/2} = g^{1/2}$ >> Still emperential time. Sinder (alculus: sub-expensional time, i.e. $\Theta(2^{AE})$ for $E \leq 1$.

(Skipped in class) $(\mathbb{Z}_{q_1}+)$ Normulp: consider group Zg with + operation. Elements: {0,1, ..., 2-13. Croup operation: a, b -> (a+b) % g Dlog problem : given g, & E Zg, find x s.t. g+g++g=h x.g x times Easy to solve ' n = In EZg then, $g + g - + g = h \times g$ Inden Calculus: for (Za, *). i-e- group operation : product. Elements: {1,2, ..., q-13. Assenne that 2-1=2p for prime p i-e q is a "safe prime" and ord (g) is p. (Note, DLog well frag were not safe, et unial if plog would be less Hard.) ord (g) were 2

[updated on Apr 22] Let \hat{g} be the generator of \mathbb{Z}_{g}^{\star} . (It enists be Zg is a cyclic group) for prime q. i.e. $\mathbb{Z}_{g}^{\star} = \langle \hat{g} \rangle$. Let $\mathbb{G} = \langle g \rangle \subseteq \mathbb{Z}_{g}^{\star}$ $|Z_{g}^{+}| = q - 1$, $|G_{I}| = p = (q - D/2)$. If q ~ exp(x), p ~ exp(x), one would enpect plog to be erand in Gr..., But, we can use Index calculus: -I. We'll first solve DLog wort of i-e- given h, bind DLogg h D. We can then compute Logg h as follows: $g = (g)^2$. so is h=(g) (x = log₈h), then, $h = (g)^{\chi} = (g^2)^{\chi/2}$. so, $\log_g h = 1$, $\log_g h$ (If loggh is not even, then, h is) NOT in the p-sized subgroup! we'll now see the algo. to compute, log n :-

all primes < B. parameter, to be set later. L'will be our 'factorization basés' lg. for B=6, L={2,3,53. 120 = 2³. 3. 5 can be bactored in 49=7² cannot. A number is B-smooth if all its prime factors are < B. i.e. 120 is 6-smooth, 49 is not. step 2.) Compute logg pi for all i c[t]. (we'll see enou later) now, we can find plog of ANY B-smooth number. 3.) r = 0 NHILE h+gt is NOT B-SMOOTH: step3.1): r ct. Zg

re. Find a value rest. high bactors in B, F.C. hg = The Pi = 2 * 3 * 5 · · * (Pt) Lets take log base g on both sides: $log_{g}h + r = \sum_{i \in [t]} e_i * (log_{g}p_i)$ >> logg h = -r + Zei* (logg pi) (we computed these in step 2) step 3-2) * Factorize high in L, i.e. find ci. * Output' -r + E Ci * (logg pi) Mon objicient is step (3)? is How many & values de we need to somple until h.g. is smooth? MATH FACT 1: There are M B-smooth

 $u = \log N$ numbers < N, where log B (N is 2 for us) (N is 2 for us)so, in expectation, we'll need to try ut different values of re. (i's How much work do we do for each volue of r sampled? We try to factorize high with basis L., (to check if its B-smooth.) MATH FACT 2: Tenere are B primes $\leq B$. $\Rightarrow |L| = B$ (asymptotic) log B. so, to factorize high with basis L. ~ Try dividing by each prime in L $\mathcal{O}\left(\frac{B}{\log B} + \operatorname{polylog}(B)\right)$

praimes in L Time to drivide. = 0(B)so, total runtime of $\mathcal{O}(u'-B)$ step (3): $\mathcal{O}(u'-B)$ Back to step(2): How to compute logg Pi Y Pi E L? Sample 4, s.t. g" factors in B. (e.g. by running a while loop,)i.e. $g^{H_1} = TT P_i^{e_i^{H_1}}$ How Known (by factoring gⁿ in L.) Think of each loggp' as a variable Xi Then, (1) is a linear equation in fixig. There are t variables, so it we can get t equations, we could solve for § Xi'Y

Formally : step (2.1)? For it \$1, 2, ---, ty. ri = 0 while gri does not factor in L: ri Ef Zg $= \frac{1}{2} \sum_{i=1}^{\infty} \frac{$ $M_{t} = \sum e_{i}^{(t)} N_{i} \qquad \begin{pmatrix} i \cdot e_{i} & A_{t} & e_{i}^{(t)} \\ i \cdot e_{i} & g & = \prod p_{i} \\ i \cdot e_{i} & f_{i} \end{pmatrix}$ A Since we sample i randomly, w.h.p., we'll get t'independent egns. step 2.2. Solve the linear system of egno! so we'll get Xi = logz pi for all itst]. Efficiency of Step 2: -

By make fact (2), t = B = |L|, log B For each i e [t]: u * (<u>B</u> * polytog B) time + times we'll Time to factorize sample 21; until Z²¹ in L. Time how each t. to, step 2.1 3 B + U' + B. time log B Step 2.2. solving linear system: (B) so, step 3 total: < $(B^3 + u^{1}, B^2)$ step J + step 3 + step 3: < $O(B^3 + u^{1}, B^2)$ [Sgnoring] (Recall, $u = \log 92$.) (Recall, $u = \log 92$.) 26 we set B = e log log 2

then, log B = Jlog g. log log g $u = \frac{\log q}{\log B} = \frac{\log q}{\log \log q}$ (spipped in class) $u' = (e^{logu})^{u} = exp(ulogu)$ = exp (log 2 + j (log log 2) log log 2 - log log 2) < exp (1 Jlogg. loglage) $\leq exp(\int \log q \cdot \log \log q) = B.$ $i e u' \leq B$. Overall time : $\overline{\mathcal{O}}(B^3)$ where B= exp(logg. loglogg)

Notation ? $L_n(\alpha, c) = exp(c \cdot (\log n)) (\log \log n)^{1-\alpha})$ bo, Runtime: $O(B^3)$, B = Lq(1/2, 1) $\Rightarrow Lq(1/2, 3)$, $2\theta \quad Q = 2^{1}$, then, the above algo has runtime: exp (3. Jr. llog) 3. 0 (2) 3 Sub-enperential Algo for Dlog in Enteger groups !!! Best knowen Dlog attack: Lq (13,2) i.e. etp(2.(log2) (loglog2)) Conclusions -* Sub-exp. DLog algo for integer groups!

Implication: Lets say we want 128-bit security. i.e. Solving plog should take time = 2/28. For integer groups: we'll have to set 2~ 2°48 to get ~122, but security? Runtime of best plog algo (Want exp (2 (log 2))? (log log 2)?)) (This gives q - 22043) security level. i.e. If we want to rely on Dlog hardness, and have 128-bit security, we'll have to use VERY LARGE Integer groups!! # WE need to use BETTER DLog groups !! (i.e where ideally, there is no Dog algorithm better than the generic algorithms.) (which are exponential time)