
Lecture 9 : IP and2

today we enter third "unit" of the class

Unt Lectures14: FoundationsaisE
- Unit-3 (Lectures 9-13) : Zero-knowledge

Outline--
- Proofs
- Interactive Proofs
- Zero Knowledge
- 2P for Hamiltonian Cycles

https://goodnotes.com/

Q : What is a proof ?
-> It demonstrates truth... or

prover-> SOMEONE convinces >Verifier- SOMEONE ELSE that
D - a

statement-> SOMETHING is true ↓-
A convention : statements 4(z) ba + (b -a)

=
=>

as membership a2 + b2 = c

isprime
"

x t L primes
Set of
primes

instance-language
statement

Formally from complexity theory) :

A language is a set of strings LEO ,
13*

* statement takes the form X + L

Examples :

- "15 is biprime" -> 15 [pqip, qe (prime
- "O issatisfiable"- E formula / x = 13
- "O is unsatisfiable"-> E formula b 1 x /) = 03
- "G has a Hamiltonian Cycle" -> GES all graphs with Ham. Cycle]
- "OHAG is true"-> ...

Not all statements are equally hard to prove !

https://goodnotes.com/

Non-Interactive Proofs

Classically , a proof is simply read (non-interactive)

Fix a language L . A prover P wants to create
a p roof it to convince a Verifier that XL

bounded->X #- polytime
un ↑

Verify (x,
#) -> 50, 13
*deterministic

Key Properties :

- Completeness : XEL
,Verify (x +) = 1

S

- Soundness : x L
, Verify (x,) = 0

If we have completeness and soundness ->> LNP
(is an NP witness)

NP Complexity Class :

↳ Informally ,
a language LEND if statement x +L

abe proven with a non-interactive proof
↳ Formally , there exists an efficient algorithm MC.,)

S.t
. x +L> 7 W + [0

, 13 Py(I) S .
t

.

M/x
,
w) = I

Ex : To prove SAT
,
D sends satisfying assignment

to V .

More generally ,
sends W and V checks M/x

,
w) = 1

How can we prove more?

By changing the model !
↳in a court

, people ask questions !

https://goodnotes.com/

Interactive Proofs [Goldwasser
,
Micali]

Interactive TMs :

P(x)
<

> V/) -Canbemodeled
a

s
a ts

> access to a next message fen :

:
Srandomness) next li

, msgi,state)-> (msgi, stated↑
↑ ↑ ↑↓ round msy precate msg next

sent state

0/1 initial state: next 10
,

x,
0) -> L-

, init st)

- P
,
V are randomized

,
interactive Turing machines

↳ I rounds
, message length ,

V time : poly
↳ D : unbounded

denotes output
of V when P

,
V interact↑

-Key Properties :
given can amplify

I
- Completeness : XXEL

,
Pr[LP,v (x) = 132↓ to I-neg

wh repetition
- Soundness :XL

,
X*, Pr[LP*) (x) = 17E

↑Pis honest prover, I can amplify to

and soundness should negl/repetitionW

hold fory malicious

prover, not just the
honest one

What do we get from interaction?
1 .
IP captures much broader class of problems
than NP

.

In fact
,
IP = PSPACE !

2.Even for NP statements
,
interaction can allow

proving a statement with communication < /w

3. Interaction enables a surprising new property :

ZERO-KNOWLEDGE...

https://goodnotes.com/

Zero Knowledge

Conceptually, a proof that shows X-L and
revealsnothing else

Examples :

- Given O , prove that SAT without revealing
the satisfying assignment

- Prove X is the correct output of some algorithm
without revealing my secret inputs to the algorithm

How do we define "reveals nothing else" -> how do we

define knowledge?
- Say you

have N =

pq and also the
factor

D .

Do
you

know q? Yes b/ you can calculate o efficiently!
-say you have anencryption of x Encyx) .

Do

you know x? Intuitively no bly you can't efficiently
recover x from EnC()

=> KNOWLEDGE is what you can compute efficiently

Intuition : if any info a dishonest verifier can

derive from the protocol transcript could have
been efficiently derived from X

,
the protocol

is zero-knowledge !

Zero Knowledge: (P
,
v) is 2K is PPT V*, 7PPT Sim ,

XL
,

View [<P
, v

+> (x)]3 =
= ESim(x)]

Needs to be true for * computational , statisticals
any (potentially

malicious
or perfect

Verifier v notjustf we

Write definition
withV

instead of V*,itiscalledtrifier2or HU

https://goodnotes.com/

- View [(D,
V) (x) is what V*

sees when interacting with P
- Sim() is the algorithm that writes down the
transcript without interacting with P

* Remember : input to Sim() essentially captures
what the (P

,
v) interaction leaks because that's

the information the verifier is allowed to use

when writing down the transcript

How do we achieveZK? What languages have2 proofs?
↳ today ,

we will prove that there is a 2 proof
protocol for every language in NP !

Approach : give a 2K protocol for one NP-complete
problem CHAMCYCLE) ,

then a 2K protocol for any
other NP language is just to reduce the
instance to this language and use the same

protocol

forHamiltonian Cycle !
Def : A Hamiltonian Cycle visits every

node in a graph exactly once / IT-
Let HAM be the set /language) of graphs

4

wha Hamiltonian Cycle

Trivial IP for HAM :

P(G) V(G)
finds a cycle C

L G -> checks2 -> 0/1

https://goodnotes.com/

1) Complete?
2) Sound ? Yes:

Yes !

3) Z? Probably not...
↳If P= NP

,
thenV can compute the edges

on the cycle itself ,
so this would be 2K !

-
>for HAM

First
,

a sketch:

G) V(G)
< Find Cycle (6)
permutation on vertices
commit to 0

commit to (G)
commitments
->

b b 20
, 13

--2
if b= 0,open o,

0 (6) //Shows o

-> (not C)
if b = 1

, open subset // shows O(c)
of ·(6) that
is o(c)

(not of

Now
,
in detail :

Let Commit be computationally hiding and bindingLet G have n vertices [n] = E 1
,
2, ... n3 and an

adj ME EO
,1x GE(n

,
M)

- acency matrix
for a permutation o on [n]

,
O (M) is Ms

where isj, M8) , (j)
= Mij

https://goodnotes.com/

12 23
--⑧ G

M= H
O G
34 4 I

! -it
I

M' =

il
O

I110 I

I I O

A cycle I is a list of n+ 1 vertices S
.
t

.

· Xit[n] Mei
,
e

= 1 and Int = I,
· 19 li : i < [n]3 = n (Hamiltonian)

P((n
,
M)

,
c) V((n

,M)
o Perms[[n]] MizOLM)
i

, j [] , rijR
Commit (M, rij)Cij
-

Hi = [n]
,
SiR

di= Commit(o(i)
, Sil

all cijsdi

b

Y
b 50

, 13

if b = 0 :
-o

,
all rij,

Si O is a permutation?
>
di Commit (0(i)

,
Sil

Mi= o (M)
↳j Commit (Mij , rij

if b = 1 :
,
fit[n]

, recen,
and

l'= [0(i) : i fl] Mes
>
Che Commit (

Meilit
Wei lit (

I' is a cycle ?

https://goodnotes.com/

An example run of the protocol :

n = 4 12
-

23

n = [% !
O

1 = [1
,
2

,
4

,
3

, 1] Commit

0 = [1+2
,
2 +3

,
3 + 4

,
4 - 1 + [S1

, 52 , 53 , 54] RY

&in/commit()o OVaz 23

r31

r41a n

reveal when

2,
3

,
1

,
4

, 2] b= 0

reveal when b = 1

Complete : ~
Sound : If MHAM

,
O

,
OIM) HAM

,

So
,
if P commits to o (M) :

if b = 1 (prob 50%) - V rejects
If P commits to something else

if b = 0 (prob 50%) =>V rejects
(or

,
a binding break)
soundness :/2-binding error

To prove 2, we must define Sim :

Sim(n
,
M) :

-

=18800]b= 20
, 13

let M

,

Perms[[n]]
if b = 0 : Ecyclean
Miz o(M)

if b = 1 :

M'=o(t) ,
1 = [1

,
2

, ..., ,
1)

,
lo(l)

https://goodnotes.com/

1/ commit as in protocol
b' = V * (M

,
commits); if =b ,

restart (for dishonest
/ open as in protocol V*) +

if b = 0
,
1/l are not needed

if b = 1
, relationship M'= o (M) isn't checked

Output transcript

Note : this is only V (since b 50
,
13)

- a malicious V
*

might bias b (so add b)
↳ if b' and b are independent :

Dr [restart] = 50% > X reps for a 2 failure
rate

↳ if not :

↓ is correlated wh b is correlated wh the msgs
=> attack on commitment hiding !

Now ,
we must show

& View [(P, v (6)]] = & Sim(Gl3

& /G, D openings)]
- all of these are distributed exactly as in

the real protocol
~ some of these are opened : they're also

distributed exactly as in the real protocol
the rest are un-opened : if they can be

distinguished ,
we have an attack on hiding.

Chybrid argument over all unopened commitments)

https://goodnotes.com/

