Today
* Recap: SNARKs & Linear ACs
* Private aggregation
* Simple scheme & its problems
* Fix: proofs on secret-shared data
* Fully linear ACs

(Story)

Logistics
- Problem Set 5 is out! Due 6/8 at 5pm on Gradescope
- OHs today - David's OH moved to 2:30pm today
- Research...
- David's class

Today, we are covering results that are "hot off the press:"
- Application of very recent techniques to privacy problem
 Browser vendor compacting the most popular homepage w/o revealing anything else
- Fancy crypto, not just for making $! Also for protecting privacy.
- Why crypto is awesome!...from theory, theory to practice in one lecture!

This is not only theoretical...
Recap: Graph 3-coloring

Normal NP proof: \[P \text{ 3-colors } G, R(M) \text{ bits } \rightarrow V \]

SNARG

\[P \text{ snarg of } G, 8A \text{ bits } \rightarrow V \]

\[\text{No matter how large graph is!} \]

- Proof shorter than NP witness!
- Good evidence that SNARGs don't exist for all NP lang under "standard" assumptions

\[\text{What is this?} \]

We constructed SNARG using general strategy (BCIOp,...)

\[\text{Linear PCP for } L \]

\[\text{Crypto compiler using linear-only encryption} \]

\[\text{SNARG for } L \]

\[\text{Info-theoretic part (no assumptions)} \]

\[\text{Crypto part (uses assumptions)} \]

Since we will be using Linear PCPs again today, want to refresh your memory.
Types of Proof (into a language $L \subseteq \{0,1\}^*$)

<table>
<thead>
<tr>
<th>Type</th>
<th>Access to x</th>
<th>Access to Π</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP/MA</td>
<td>Read all</td>
<td>Read all</td>
</tr>
<tr>
<td>PCP</td>
<td>Read all</td>
<td>Point query</td>
</tr>
<tr>
<td>Linear PCP</td>
<td>Read all</td>
<td>Linear query</td>
</tr>
<tr>
<td>Fully linear PCP</td>
<td>Linear query</td>
<td>Linear query</td>
</tr>
<tr>
<td>PCPP</td>
<td>Point query</td>
<td>Point query</td>
</tr>
</tbody>
</table>

Many more! Also interactive!

In a fully linear PCP, the verifier has restricted access to the input and the proof Π.

Q: Can you construct a FL-PCP for L from an NP proof for L?
Private Aggregation

Let $\mathcal{F} : \mathbb{F}^n \to \mathbb{F}$ be a function.

Problem: Want to compute $f(x_1, \ldots, x_n)$ without revealing "anything else" about x_1, \ldots, x_n to server.

When could this be useful?

E.g. x_i is speed of car i on Bay Bridge

$F()$ computes average speed

\Rightarrow Learn avg speed w/o leaking any individual's speed

E.g. x_i is 0/1 value: Browser i has Stanford.edu as its homepage.

$F()$ computes sum of x_i

\Rightarrow Learn how many people use stanford.edu as homepage w/o leaking anything else.

E.g. x_i is location of phone i

$F()$ computes most popular value amongst inputs

\Rightarrow Learn pop location w/o leaking any individual location.

Two general approaches

1. Local differential privacy
2. MPC-based}
We'll simplify the problem a bit

1) We'll use 2^n "non-colluding" servers for practical reasons...
2) We'll focus on "simple" functions f to avoid general MPC.

Consider 2-server case (generalizes easily to many servers)

Problem Statement

Each client i holds $x_i \in \mathbb{F}$ (e.g., 0/1 value, saying whether

Server want to compute $f(x_1, ..., x_n) = \sum_{i=1}^{n} x_i \in \mathbb{F}$ (Popularity of

Completeness: Everyone follows protocol \Rightarrow server output $\sum x_i$.

ZK/Privacy: Each server can simulate view of herself + any # of malicious clients given only $f(x_1, ..., x_n)$.

Simple Scheme

Very simple protocol achieves this!

Choose $r_1 \in \mathbb{F}$

Choose $r_1 \in \mathbb{F}$

\[\text{Server A} \quad r_1 + r_2 + r_3 \in \mathbb{F} \]

\[x_i, x_2, x_3 \in \mathbb{F} \]

\[\text{Server B} \quad (x_i - r_1 + (x_2 - r_2) + (x_3 - r_3) \in \mathbb{F} \]

\[= (x_i + x_2 + x_3) - (r_1, r_2, r_3) \in \mathbb{F} \]

Completeness:

\[\checkmark \]

ZK: Each server independently sees all random values, conditioned on sum being $f(x_1, ..., x_n)$.

17
Problems w/ Simple Scheme

1) Where do you get 2+ non-colluding servers?
2) Why would Google do this?
3) Evil client

\[
\begin{align*}
\text{Berkeley student} & \quad \xrightarrow{\mathbf{r} \in \mathbb{F}} \quad \text{Server A} \\
x^* \leftarrow (-100000) \in \mathbb{F} & \quad x^* \xrightarrow{\mathbf{r} \in \mathbb{F}} \quad \text{Server B} \\
\mathbf{r} \leftarrow \mathbb{F} & \quad \text{Server A}
\end{align*}
\]

One evil browser can completely screw up the aggregate statistic we wanted to compute!

- Can increase it or decrease it by arbitrary amount!
- This matters in practice! (private location, private ads, homepage, etc)

We need an extra security property!

Robustness: If the adversary controls m clients' and the servers execute the protocol correctly, servers output a value in range

\[
\left(\sum_{i=1}^{m} x_i\right) \leq V \leq \left(\sum_{i=1}^{m} x_i\right) + m
\]

Intuition: The worst that evil clients can do is to lie about their value of \(x_i\).
- Evil client can always lie about homepage.

The robustness property can be stated more generally for other cases, but let's keep it simple.

How can we get robustness?
- Prior approaches used NIZK/SNARKs \(\Rightarrow\) relatively costly (pub-key crypto, etc.)
Idea: When client submits secret-shared data to server, it also submits a proof of prover A.

\[\text{Client(s)} \quad \xrightarrow{\ [x]_A, \tau_A} \quad \text{Server A} \quad \xrightarrow{\text{acc/reg}} \]

\[\xrightarrow{\ [x]_B, \tau_B} \quad \text{Server B} \quad \xrightarrow{\text{acc/reg}} \]

In the example here, what is the language \(L \)?

\[L = \{0, 1\} \subseteq \mathbb{F}, \quad \Rightarrow \quad x = 0 \text{ or } x = 1 \text{ in } \mathbb{F} \]

[Evil value (-10000) \not\in L]

Revised Protocol (P1is) - Joint work w/ Dan Boneh

1. Client splits value \(x \) into shares \([x]_A, [x]_B\).
 Sends one share to each server.

2. Client sends proofs \(\tau_A, \tau_B \) to each server assuring that \([x]_A + [x]_B \in L \). \(\leftarrow \) "Valid Submissions"

3. Servers check proofs. If it accepts -> keep shares
 Else -> reject client submission

4. After collecting submissions from all \(n \) clients, each server publishes sum of shares received so far

5. Server recovers sum by combining their sum
 \[f(x_1, \ldots, x_n) \]

\(\Rightarrow \) Bottom line: Evil clients can't screw up the statistic by "too much"

How do we implement the proof system?
Proofs on Secret-Shared Data

Language $L \subseteq \mathbb{F}$

$P(x) \xrightarrow{\Pi_A} V_A([x]_A) \rightarrow \text{acc/rej}$

$\xrightarrow{\Pi_B} V_B([x]_B) \rightarrow \text{acc/rej}$

Correct IF $[x]_A + [x]_B = x \in L \Rightarrow V_A$ and V_B accept

Sound IF $[x]_A + [x]_B = x \notin L \Rightarrow \forall \Pi_A, \Pi_B^*, V_A$ and V_B reject

$\Pi_V \kappa \equiv \text{rt sim } S \text{ s.t. } S_0 \leftarrow \{ \Pi_A, \Pi_B \}, \forall x \in L$

$\{ S_0(x) \} \Leftarrow \{ \text{V: ev: } (P(x) \xrightarrow{\Pi_A} V_A([x]_A)) \}

\{ \text{S: ev: } (V_B([x]_B)) \}

s.t. $[x]_A \in \mathbb{F}$

$s.t. [x]_B \in \mathbb{F}$

$s.t. [x]_A + [x]_B = x$

Intuition: neither server learns anything about x, except that $x \in L$.

Could consider stronger defin: Full ZK against malicious servers.

Achievable but more complicated.
Turns out, very easy to construct from Sully linear PCP. For NP language \(L \), recognized by \(R(x,w) \), over finite field \(\mathbb{F} \):

- Syntax: \(P(x,w) \rightarrow \hat{y} \)
 - \(V^x,\hat{y}() \rightarrow \text{acc/rej.} \)
 - \(\mathbb{V} \), makes linear queries to \(x \) and \(\hat{y} \).

- \(\mathbb{F} \)PCP Property:
 - Complete: \(\forall x \in L. \quad P[x,y] = 1 \quad \Rightarrow \hat{y} = R(x,w) \)
 - Sound: \(\forall x \notin L, \forall y \quad \Pr[V^x,y()(...) = 1] \leq \frac{1}{2} \)

- Strong \(\text{HVZ1k} \): \(\exists \text{ sim.} \quad \forall x \in L \)
 - \(\{S(x)\} \) is \(\{ \text{honest verified queries, } q_1, \ldots, q_i \in \mathbb{F}^n \} \)
 - \(\{ \text{query responses, } a_1, \ldots, a_i \in \mathbb{F} \} \quad \text{for } o_i = \langle \mathbb{K}, q_i \rangle \)

Verifier doesn't learn anything about \(x \), apart from \(\mathcal{S}(x) \), from looking at query answers.

- Uses \(O(1) \) linear queries, size \(\mathcal{S}(x) \) s.t. \(\hat{y} \) is \(\mathcal{F} \)pcp.
- \(\hat{y} \)s on shared data are fast:
 - e.g., \(\hat{y} \) with \(n \)Gt mul gates
 - \(\mathcal{P}(n) \) s.t.
 - NICE \((\log n) \) : 32
 - SNARK \(n \) : 339

- Proof size \(\approx 2 \) MB
- \(\hat{y} \) size \(\approx 1 \) MB
- \(S \)-to-\(S \) comm.
 - \(\approx 200 \) bytes
 - \(\approx 200 \) bytes

Ongoing work

Can construct \(\hat{y} \)s on shared data with unconditional soundness \& \(\mathcal{F} \)pcp

\(\Rightarrow \) No assumptions.

Why is this surprising?

Common misconception was that NICE/SNARK/SNAIL MTC

... necessary.
Construcing Proof on Shared Data From FLPCP

\[
P(x,w) \xrightarrow{\pi} V_A([x]_A) \quad \downarrow \quad [a_1]_A, \ldots, [a_3]_A
\]

Choose random \(\pi, \pi_A, \pi_B \in \mathbb{F}_t^m \)
\(\pi = \pi_A \times \pi_B \)

Run \(V_{FLPCP} \)
\[
[\pi]_B, \ldots, [\pi]_B
\]

\(V_B([x]_B) \)

To check the proof the verifiers \(V_A, V_B \) run the FLPCP verifier on shared randomness.

\[
q_i \in \mathbb{F}_t^{m+n}
\]

\(V_{FLPCP} \xrightarrow{a_i = <(\pi, q), q_i> \in \mathbb{F}} \)

\(V_A \) and \(V_B \) need to be able to respond to the FLPCP verifiers' queries.

Remember: Computing linear functions on additively shared data is easy!

This goes back to the lectures on MPC.

Each verifier holds:
* a share of \(x \in \mathbb{F} \)
* a share of \(\pi \in \mathbb{F}_t^m \)
* Each query vector \(q_i \in \mathbb{F}_t^{m+n} \)

Each verifier can locally compute share of answer
\[
a_i = <(\pi, q), q_i> \in \mathbb{F}
\]

Verifiers broadcast their shares of query answers, feed them to \(V_{FLPCP} \), output whatever it outputs.

\(\rightarrow \) Completeness, soundness, HWE follow easily
So now we have compiler

Where do we get a fully linear PCP?

The standard 2PCP constructions that David presented last week are also fully linear!

Putting it all together:

If validity predicate is computed by circuit C

<table>
<thead>
<tr>
<th>Client-Serve</th>
<th>Serve \rightarrow Serve</th>
<th>Field size</th>
<th>Client-Serve</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1Ci)$</td>
<td>$O(Ci)$</td>
<td>$\Omega(1Ci)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Very small # of bits communicated b/w the aggregation servers! Indeed of $1Ci$, almost.

No public-key crypto or assumptions needed! This is much faster than $\sum_{i,j}$. Conclude for client/privacy.

\Rightarrow Downside is that $Cu-S$ comm. is larger (ongoing work)

What if you want a more complicated agg statistic?

- Lin. regression
- STDEV
- Mode
- Most popular/long hitters

Use "linear" data structures... reduce problem of computing $f(1)$ to problem of computing \sum's.