1. DEFINITIONS AND FOUNDATIONS

1.1. Pseudorandom generators. Modern cryptography can be viewed as the study of hardness. In a
tvpical crvptographic application, there is some task that is “casy” or “cfficient” for the honest user, but
is “hard” or “difficult” for the illegitimate user. For example, take the case of a (secret-key) encryption
scheme. It should be easy for the honest users (those who possess the secret key) to encrypt and decrypt
messages. However, it should be difficult for an illegitimate user (those who do not possess the secret key)
to learn information about a message given only the ciphertext. In this lecture, we will introduce several
(closely-related) notions that underpin symmetric cryptography: one-way functions (OWFs), pseudorandom
generators (PRGs). psendorandom functions (PRFs), psendorandom permutations (PRPs). We begin with a
discussion of pseudorandom generators. Intuitively, a PRG takes as input a short seed (random) and expands
it into a longer random-looking string. PRGs are also commonly referred to as stream ciphers. We formalize
this notion in the lollowing definition:

Definition 1.1 (Pscudorandom Generator). Let A € N be a security parameter. A pseudorandom generator
(PRG) is an efficiently computable function G : {0,1}* — {0, 1}*™) where £()) is a fixed polynomial in X
and £(A) > A. A PRG is secure if for all efficient adversaries A, there is a negligible function £(A) = negl(})
such that : Wodd O\ - \A)M\ol j_)

PRE Ade [, 6] FPrls € 10117 AGA(5)) = 1] = Pufs &0, 1D Ale) = 1] = ().

Let us interpret this definition:

o We write 2 <~ {0.1}* to denote that the input « is sampled uniformly at random from {0, 1}*. More
generally, for a finite set S, we write 2 ¢~ § to denote a uniformly random draw from S.

e We say that a function f is “efficiently computable” (or more simply, “efficient”) if it can be computed
by a probabilistic polynomial-time algorithm (in the length of its input).

e We say that a function ¢ is “negligible” in a parameter A, denoted negl(}), if £(A) = o(1/A°) for all
constants ¢ € N. In other words, £ is smaller than any inverse polynomial function of A. We will
often refer to A as a security parameter.

e We often refer to £ as the expansion factor of the PRG.

e Intuitively, a PRG is secure il no efficient adversary can distinguish the output of a PRG from a
uniformly random string of the same length, except with vanishingly small probability (as a function
of the security parameter A). Note that restricting the adversary to be efficient is critical; otherwise,
the definition is impossible to satisfy.

e A PRG is more accurately viewed as a family of functions, where there is one function G for each
security parameter A € N. We sometimes denote this by G = {G,},-y. For notational convenience,
we will drop the explicit dependence on the security parameter A when it is not essential.

Another way to state the PRG security definition is throngh the lens of computational indistinguishability.
We begin by defining what it means for two distributions to be computationally indistinguishable.

Definition 1.2. Let A € N be a security parameter. Let D} = {Dlv)}aeN and Dy = {Dg,;\}AeN be two

ensembles of distributions. We say that D; and Dz are computationally indistinguishable, denoted D, & D,
if for all efficient adversaries:

|Pr[z « D : A(1*, z)] — Prfz « Dy - .A(l“‘.:l:)]| = negl(A).

As before, for notational conciseness in the sequel, we will omit the explicit dependence on the security
parameter A unless it is critical for understanding.

Intuitively, two distributions Dy and D; are computationally indistinguishable if no efficient adversary can
tell whether it received a sample fromn the first distribution D or the second distribution Da (except with
negligibly small probability as a lunction of the security parameter). Note that in the above definition, the
adversary’s input includes the unary encoding of the security parameter A. This is to enable the distinguisher
to run in time poly()A). Otherwise. if the outputs of the distributions D; and Ds are short (e.g., log A-bits
long), then we are constraining the adversary to run in polylogarithic time. We can now reformulate the
definition of a seeure PRG in the langnage of computarional indistingunishability. In particular, we say that a

2

85 =

function G is a secure PRG (with expansion factor £(A)) if the following holds:
{3 & [0,13* G(s)} £ {~ & {0,1)40 z} .

Remark 1.3 (One-Time Encryption using PRGs). It is very straightforward to build a (symmetric) one-time
encryption scheme using a PRG. Suppose we want to encrypt £ = £(A)-bit messages. The encryption scheme
relies on a PRG with expansion factor £()) and the key is a PRG sced s € {0,1}*. The encryption of a
message m € {0,1}**) is then m @ G(s). Security of the PRG means that G(s) looks like a uniformly random
string, in which case. the encryption scheme is precisely the one-time pad, which provides perfect secrecy.
The limitation of course is that this encryption scheme is one-fime.

1.2. The Blum-Micali PRG. A natural question to ask is whether secure PRGs exist. Unfortunately,
answering this question in the affirmative also shows P # NP. It turns out that proving the existence of
PRGs requires proving a stronger result than P % NP—in particular, that one-way functions exist.! In this
class, we operate (at the minimum) under the assumption that one-way functions exist. Using one-way
permutations (a slight strengthening of one-way functions), it is straightforward to construct a PRG that
extends the input by a single bit (the same is possible starting from a one-way function, but with a more
complicated construction).

Suppose now that we have a PRG G that extends the seed by a single bit, that is, Gy: {0,1}* — {0, 1} 1.
A natural question is whether we can use G to build a many-bit PRG? Given a secure PRG G that expands
the seed by a single bit, it is possible to construct a PRG with an arbitrary poly(A)-expansion factor using
the Blum-Micali construction:

Construction 1.4 (Blum-Micali). Let Gy: {0,1}* — {0,1}**! be a secure PRG that extends the input
sced by a single bit. Fix any polynomial £(\) = poly(A). We can use G to construct a PRG H, with
expansion £()\) as follows. On input a seed sy € {0,1}*, Hy computes (s;,b;) + G(si—1) for i € [¢]. Finally,
H, outputs the bits (by,....b) € {0,1}%.

Theorem 1.5. Fiz any polynomial £ = £()). If G = {G\},cn i a secure PRG that ezpands the seed by a
single bit. then H = {H\}, oy 15 a secure PRG with expansion factor £()).

To prove Theorem 1.5, we introduce a technique called a hybrid argument. The basic idea of a hybrid
argument is as follows. Suppose we have two (ensembles of) distributions D; and Ds, and we want to show
that Dy ~ D>. Suppose moreover that we can identify an “intermediate” distribution D' and we are able
to show that D; = D’ and D’ = D,. We claim that this implies D, % D,. To see this, take any efficient
algorithm A. We need to show that

|Pr(z « D, : A1}, z) = 1] — Prfz « Dy : A(1*,z) = 1]| = negl(}).
We write p; = Pr[z + D : A(1*,) = 1] to denote the probability that A outputs 1 when given a sample

from D;. We define p; and p’ accordingly (for distributions D3 and T, respectively). We can now appeal to
the triangle inequality to argue

lpr —p2l = o1 — P + 0" — p2| < |p1 — P'| + |p2 — p'| = negl(A),

using the fact that Dy = D' and D' = D,. More generally, if we have n = poly()) intermediate distributions
Do, Dy, ..., D, such that D;_; ~ D; for all i € [n], then Dy %~ D,. Note that this only applies if n is
a polynomial function in A. With this background, we can now prove the security of the Blum-Micali
distribution.

Proof of Theorem 1.5. We define a sequence of £ hybrid distributions Hyby, ..., Hyb,, where distribution
Hyb, is the following distribution:

(1) Sample by,...,b; e {0,1} and s; o 0132,
(2) For > j > i, let (Sj,bj) — G}‘(Sj_]_).
(3) Output by, ..., b.

11t is entirely possible that P # NP, and yet. one-way functions, and correspondingly, cryptography does not exist.
3

- —

J,/l,

6 9= ¢ s, —[e]>s - we s
b
b, by

H\ : "‘P“"‘f‘u ._..]..bl L}

By construction, Hybg is the output of the Blum-Micali construction, while Hyb, is the distribution where
the output is a truly random /-bit string. Each pair of intermediate distributions is computationally
indistinguishable (by PRG security of G). Since £ = poly(A), we conclude that Hyb, ~ Hyb,, and so H is a
secure PRG. a

1.3. Pseudorandom functions. In Remark 1.3, we argued that PRGs (with sufficient expansion factor)
can be used to derive a secure one-time encryption scheme. The natural question is how to build many-time
encryption schemes (i.e., CPA-secure symmetric encryption). As you may recall, a useful cryptographic
primitive for building many-time encryption schemes (as well as many other cryptographic primitives) is the
notion of a pseudorandom function (PRF). We first recall the definition of a PRF.

Definition 1.6 (Pseudorandom Function). A pseudorandom function F: K x X — Y on key-space K, domain
&', and range V is an efficiently-computable function F: K x X — Y such that for all efficient adversaries A:

'PRFﬂJJ[R,FHPr[k & K: AP (12 = 1) - Pr[f & Funs[X,)] : A/0(12) = 1)| = negl()).

In particular, a PRF is secure if no efficient adversary can distinguish the outputs of the PRF (on adaptively-
chosen queries) from that of a truly random function. It is easy to see that a PRF can be used to build
CPA-secure encryption schemes (e.g., using nonce-based counter mode).

1.4. From PRGs to PRFs. Having defined the notion of a PRF, the natural next question is whether
PRFs exist. A seminal result by Goldreich, Goldwasser, and Micali showed how PRFs can be constructed
from any length-doubling PRG (which in turn, can be instantiated from any one-way function). The
Goldreich-Goldwasser-Micali (GGM) construction is a tree-based construction. Let G : {0,1}* — {0,1}>*
be a length-doubling PRG. On input a seed s € {0,1}*, G(s) outputs a string (sg,s1) € {0,1}?*. For
notational convenience. we will write G(s) - (sg,s1) = (Gy(s), G1(s)). The GGM construction of a PRF
over a domain {0,1}" operates as follows. On input an input 2 =2, ---2, € {0,1}" and a key k € {0,1}%,
the PRF F: {0,1}* x {0,1}" — {0,1}* is defined as F(k,z) = Gz, (Gz,_,(--- Gz, (s)--)). Security of this
construction reduces to the security of the PRG and can be formally shown using a hybrid argument.

The GGM construction can be used to build a PRF on any domain {0,1}" where n = poly(}\). The range
of the above construction is always {0,1}*. How do we extend to an arbitrary range? If we want the PRF
output to be {0, 1} where £()\) <), then we can simply truncate the PRF (why does this work?). On the
other hand, if £(A) > A, we can use F(k,z) as the input to a PRG that outputs £(\) bits (security of this
construction again follows by a simple hybrid argument).

1.5. From PRFs to PRGs. Once we have a PRF, it is very straightforward to construct a PRG by simply
evoluating the PRF in “counter mode.” Suppose we have a one-bit PRF F: {0,1}* x {0,1}" — {0,1}. We
construct a PRG G: {0,1}* — {0,1}) as follows: G(k) = F(k,0)||F(k,1)||-- - ||F(k,£). This construction
works as long as n > log . Security of this construction directly reduces to the security of the underlying
PRF (no hybrid needed).

PRF Seauty

@J.Wg cya\\%u
W 00 ke X

§ « PRE(K, D
el 2 {e‘f-c.,,,['x.,g}

5(4)

L ¢ fod

