Permutation (review from CS 255)

Questions: note cards

A permutation on \{0,1\}^n is a (one-to-one) mapping

\[f : \{0,1\}^n \rightarrow \{0,1\}^n. \]

In crypto terms, \(f \) takes \(n \)-bit strings to \(n \)-bit strings.

A "block cipher" is defined over sets \((\mathcal{X}, \mathcal{K})\) and consists of algs \((E, D)\):

\[E : \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{X} \]
\[D : \mathcal{X} \times \mathcal{K} \rightarrow \mathcal{X} \]

Idea: Both \(E, D \) are efficient

* implement permutation on \(\mathcal{X} \)
* are inverses of each other for given \(\mathcal{K} \)
* satisfy some security notion

("pseudo-random permutation" ... defined in 1sec)

Compare with PRF

\(\rightarrow \) They are hard to construct!

- Any sufficiently crazy circuit might give you a PRF
 (plausibly, at least)
 Very hard to build a PRF! A random function won't do it.
- Can do everything we need with PRF in CTR Mode
 + TLS etc.
- Old days: used them for reasons we can discuss...
- One reason to care about PRFs: Format-preserving encryption

\[\text{Credit card} \quad \rightarrow \quad \text{credit card} \]
\[\text{Zip code} \quad \rightarrow \quad \text{Zip code} \]
\[\text{Phone #} \quad \rightarrow \quad \text{Phone #} \]

Uses: Small, backwards compatible, valuable

\(\rightarrow \) C.S. Voltage
Pseudo Random Permutation (PRP) ("Block Cipher")

Formalizes one security notion for a block cipher

\[\begin{align*}
\text{Challenger} & \quad \begin{cases}
\sigma \in \mathcal{K} \\
\sigma^\prime = 0 \in \mathcal{K} \\
\sigma^\prime = 1 \in \mathcal{K} \\
\mathcal{F}(\cdot) \leftarrow \text{Perms}[\mathcal{K}]
\end{cases} \\
\text{Adv} & \quad \begin{cases}
\mathcal{X} \\
\mathcal{F}(\cdot) \leftarrow \mathcal{E}(\cdot)
\end{cases} \\
\text{Solver} & \quad \begin{cases}
\mathcal{X} \\
\mathcal{F}(\cdot) \leftarrow \text{Perms}[\mathcal{K}]
\end{cases} \\
\end{align*} \]

Intuitively:

\[\begin{align*}
\forall \sigma \in \mathcal{K} \\
\exists \mathcal{F}(\cdot) \leftarrow \mathcal{E}(\cdot) \\
\mathcal{F}(\cdot) \leftarrow \text{Perms}[\mathcal{K}]
\end{align*} \]

[Note: we didn't say anything about \(\mathcal{D}(\cdot) \).
Can define a stronger notion of security "strong PRP" allowing \(\mathcal{D}(\cdot) \) non-]

\[\forall \mathcal{K} \in \{0, 1\}^n \quad \text{consider a family } \{\mathcal{E}_n\}_{n=1}^\infty \]

Then \(\mathcal{E}_n \) must run in time \(\text{poly}(n) \).

We say \(\mathcal{E}_n \) is a PRP if, for all ppt. algorithms \(\mathcal{A} \),
\(\mathcal{A} \) (running in time \(\text{poly}(n) \)), there exists a negl function \(\text{negl}(n) \) s.t.
\[\text{PRPAdv[}\mathcal{A}, \mathcal{E}] := |\Pr[\mathcal{A} \text{ outputs } 1] - \Pr[\mathcal{A} \text{ outputs } 1]| \leq \text{negl}(n) \]
for all \(n \) sufficiently large.

\[\Rightarrow \text{From CS255: Remember to never use a PRP directly } \]
\[\text{for encryption!} \]
Building a PRF from a PRP \((\text{PRP} \Rightarrow \text{PRF}) \)

(Theorem 4.3 in Boneh Shoup)

A good PRP is also a good PRF.

Intuition: The only difference between PRF and PRP is collisions. If you see a collision, you can't distinguish.

PRF Switching Lemma. Let \(E \) be a PRP over \((X, X)\), let \(|X| = 2^n \).

Then, if an adversary makes \(q \) queries, then

\[
|\text{PRPAdv}[A, E] - \text{PRFAdv}[A, E]| \leq \frac{q^2}{2^{2n}}.
\]

Note: If \(A \) is efficient/ppt, then \(q \in \text{poly}(n) \), so

\[
\frac{q^2}{2^{2n}} \in \text{negl}(n) \Rightarrow E \text{ is a secure PRF}.
\]

Note: To be completely formal, we need to define a family of PRPs \(\{E_n\}_{n=1}^{\infty} \). We omit this notation BUT ASK IS UNCLEAR.

Proof. By a hybrid argument:

Game 0: Challenger uses \(S_i = E(k, 0) \) for \(k \in \mathbb{R}^n \)

Game 1: \(S_i \in \mathcal{R} \text{ Perm}[X] \)

Game 2: \(S_i \in \mathcal{R} \text{ Funcs}[X, X] \subseteq \text{Random Function} \)

By definition

\[
|\text{Pr}[A \text{ outputs } 1 \text{ in Game 0}] - \text{Pr}[A \text{ outputs } 1 \text{ in Game 1}]| \leq \text{PRPAdv}[A, E] \leq \text{negl}(n)
\]

\[
|\text{Pr}[A \text{ outputs } 1 \text{ in Game 1}] - \text{Pr}[A \text{ outputs } 1 \text{ in Game 1}]| \leq \frac{q^2}{2^{2n}} \text{ Want to show}
\]
To bound $|P_1 - P_2|$, we observe that, conditioned on all responses to the queries being distinct, there is no way for the adversary to distinguish P_R from a PRF (almost by definition).

So $|P_1 - P_2| = \Pr\left[\text{A sees a query response} \right]$.

$\Pr[\text{collision}] \leq \Pr_{x,y} \left[\exists x, y \text{ s.t. } S(x) = S(y) \text{ in game } 1 \right]$ by union bound.

\[
\leq \left(\frac{\text{# of pairs}}{\text{pairs}} \right) \Pr_{x,y} \left[S(x) = S(y) \right]
\]

\[
\leq \left(\frac{\text{# of pairs}}{\text{pairs}} \right) \sum_{x \neq x^*} \Pr_{x,y} \left[S(x) = x^* \land S(y) = x^* \right]
\]

\[
\leq \left(\frac{q^n}{2} \right) 2^n \left(\frac{1}{2^n} \right)^2
\]

\[
\leq \frac{q(q-1)}{2} \frac{1}{2^n}
\]

\[
\leq \frac{q^2}{2^{2^n}}
\]

So, $|P_1 - P_2| \leq \frac{q^2}{2^{2^n}}$. This completes the proof.

$P_{\text{Adv}} = \Pr[\text{P sees a query}] - \Pr[\text{P sees a query}]$ of P_R is all we need to do.

Ask a question now!

Remark: This PRE is "secure up to the Birthday Bound".

Can we get a cipher that is indistinguishable from PRE? Its advantage is

\[
\frac{q^2}{2^n}
\]

For AES-128, $q = 2^{64}$ queries is not that many.

Yes. We sometimes care about this.

See "Sweet32" attack for a different place that the Birthday Bound comes up.
Union Bound

Let \(E_1, E_2, \ldots, E_n \) be events defined over some space. Then \(\Pr[E_1 \lor E_2 \lor \cdots \lor E_n] \leq \sum_i \Pr[E_i] \).

\[\Rightarrow \text{One of the most useful tools in security analysis.} \]

\[\Pr[\text{Bad}_1 \lor \text{Bad}_2 \lor \cdots \lor \text{Bad}_n] \leq \sum_i \Pr[\text{Bad}_i] \]
The Most Interesting Direction \((PRF \Rightarrow PRP) \)

A priori, it's not clear that this is even possible. Think about it.

Idea: Use a Feistel network.

- Invented by Horst Feistel. (German-American Cryptographer)
- Designer of "Lucifer" cipher \(\Rightarrow \) DES.
- Feistel was one of Hellman's influences, ran the IBM Yorktown Heights crypto group... very influential (hence Craig Gentry)
- Motivated by ATM's!
- It's classic! DES was the standard for ~30 yrs. Still not bad!

Feistel Network.

Let \(f : X \rightarrow X \) be a function.

We construct a permutation \(\Pi : X^2 \rightarrow X^2 \) as

\[
\begin{align*}
\Pi_1(x,y) &:= (y, x \oplus f(y)) \\
\Pi_2(u,v) &:= (v \oplus f(u), u)
\end{align*}
\]

Amazingly simple!

Use many rounds of \(\Pi \) with independently keyed \(f's \).

In a classic paper, Michael Luby and Charles Rackoff show that 3-round Feistel network instantiated w/ 3 indep. keyed \(PRF's \Rightarrow PRP. \)
Thm (Luby-Rackoff)

Let $F: \mathcal{K} \times X \to X$ be a PRP with $|X| = 2^n$. Then the 3-round Feistel network E is a PRP. That is, for any ppp A that attacks E, there exists a ppp B attacking F s.t.,

$$\text{PRFAdv}[A, E] \leq 3 \cdot \text{PRFAdv}[B, F] + \frac{q^2}{2^n} + \frac{q^3}{2 \cdot 2^{2n}}.$$

Proof Idea: Show that E is a PRP.

Game 0: Real attack game.

Game 1: Replace PRFs F with real random functions.

Game 2: Adv interacts with a real random permutation.

Only tricky step is 1 → 2. Show that an input (u_i, v_i)

$$u_i \leftarrow u, \oplus S(v_i)$$

$$x_i \leftarrow v_i \oplus S_2(w_i)$$

$$y_i \leftarrow w_i \oplus S_3(x_i)$$

output (x_i, y_i)

This is just a statement about probability/distributions.

Idea: Say no two w_i's are the same after q queries. Then all S_2 outputs are indep $\&$ random. Then all S_3 inputs will likely be distinct \Rightarrow Everything looks random.

Note: After $q = \sqrt[3]{2^n}$ queries, security (and proof) breaks down.