
Implementing lattice-based cryptography in libsnark

Samir J Menon
Stanford University

Abstract
New research allows construction of SNARK’s from
lattice-based primitives, instead of pairings-based cryp-
tography [BISW17]. We implement a proposed con-
struction in libsnark, a popular existing zkSNARK li-
brary, using a quadratic arithmetic program representa-
tion and a ’crypto compiler’ based on an extension of
standard Regev encryption [Reg05] into a linear-only
vector encryption scheme [PVW08]. Our implemen-
tation should speed up verification, which is currently
unacceptably slow (40s on average hardware). Addi-
tionally, lattice-based primitives are thought to be post-
quantum secure, so our zkSNARK implementation will
inherit this useful property [Sim97].

1 Background & Motivation

1.1 What is a SNARK?
Using a zero-knowledge proof (ZKP), a prover can prove
a statement while revealing absolutely no additional in-
formation to the verifier (that is, the verifier learns noth-
ing besides that the statement is true).

In addition to the zero-knowledge property, we require
the two standard requirements for a proof: completeness
(if the statement is true, the verifier will be convinced)
and soundness (a malicious prover cannot convince the
honest verifier of a false statement).

We can refine our idea of a ZKP in three ways: non-
interactivity, proof-of-knowledge, and succinctness.

Proof-of-Knowledge
We can require a slightly stronger notion of proof by

requiring that the prover shows that she actually knows
the witness. That is, in a standard zero-knowledge proof
system, we only require that Peggy prove that a witness
exists that satisfies the public relation; we don’t require
that Peggy proves that she knows this witness. In some
scenarios that we’ll illustrate later, it’s helpful to require

that Peggy actually knows some specific witness w. This
is referred to as a proof-of-knowledge (PoK).

Non-interactivity
A non-interactive zero-knowledge proof (NIZK) is

simply one that is completed in one step; that is, a proof
π is sent by the prover to the verifier, and then the proof
is complete. While these are impossible in the standard
model, they are possible in the random oracle model. Us-
ing the Fiat-Shamir heuristic, we can convert any interac-
tive proof system into a non-interactive one, using a ran-
dom oracle (in practice, a cryptographic hash function)
wherever in the protocol a party was supposed to gener-
ate a random value. We can also build NIZK’s using the
’common reference string’ (CRS) model, where every-
one shares a large public string that was chosen honestly
from a distribution. We come back to how CRS’s help us
implement these protocols in practice later.

Succinctness
In practice, the most important cost to a NIZK is the

communication overhead; that is, the size of the proof π .
In fact, it’s relatively simple to implement a NIZK with
a very large π , but this is not feasible in the real world.
In particular, we say that a SNARK has quasi-optimal
succinctness if the length of the proof is Õ(λ ) where λ

is the security parameter and the circuit is of size 2λ . The
construction we’ve built has this property.

SNARKs
Combining PoK’s and NIZKs gives us a zero-

knowledge, non-interactive proof (or ’argument’) of
knowledge, hence the acronym ”zkSNARK”. We fo-
cus on building SNARK’s in general, since the zero-
knowledge property is easily added. These are a power-
ful cryptographic tool with broad range of applications.

The largest real-world deployment of zkSNARKs is
Zcash, a cryptocurrency that allows users to transact en-
tirely anonymously. It allows users to selectively make
the sender, receiver, and amount entirely hidden from



non-participants in the transaction.
A potentially important future application of zk-

SNARKs is verifiable computing [BCGTV 2013] (Ver-
ifying Program Executions Succinctly and in Zero
Knowledge). If SNARKs became less computationally
expensive, we could produce feasibly short proofs of pro-
gram outputs, which would have a wide range of uses in
safety engineering and distributed computing.

Currently, zkSNARKs are implemented using pairing-
based cryptography [SCIPR]. We look specifically at the
largest currently available zkSNARK implementation,
libsnark, a product of the SCIPR lab. Currently, libsnark
verification times (as used in Zcash, for example) are
longer than we’d like. This is primarily because, using
pairing-based cryptography, we have to perform a com-
putationally expensive group exponentiation at each step
in the proof circuit.

1.2 Construction of a SNARK

We’ll start by describing a linear probabilistically check-
able proof (LPCP), and then we’ll explain how to ap-
ply linear-only vector encryption to make the proof a
SNARK.

Prover Verifier
x,w x

π ← PLPCP(x,w) Q← QLPCP()

Q

y = QT π

yes/no← DLPCP(x,y)

A linear PCP is composed of three algorithms: P(x,w)
is used by the prover to compute a proof π ∈ Zm

p given
a statement x ∈ Z`

p and a witness w. Q() is used by the
verifier to generate a query matrix Q ∈ Zm×`

p . Finally,
D(x,y) tells the verifier to accept or reject the proof,
where y = QT π ∈ Z`

p. There are existing instantiations
of linear PCP’s; for our purposes, it’s only necessary to
examine the guarantees the provide.

Essentially, a correct linear PCP guarantees that for
the relation R being proven, after going to the protocol,
all (x,w) ∈ R will result in an accept, and (x,w) 6∈ R will
only result in an accept with negligible probability.

The protocol is simple. In generation, the verifier gen-
erates a query Q, independent of the statement x, and the
prover generates a proof π . The verifier sends Q, the
prover computes y = QT π , and then the verifier accepts
or rejects.

The key to making this a SNARK is encrypting the
query matrix Q and response y = QT π . We can think of
this as using a ’crypto compiler’ to secure the LPCP and

convert into a SNARK. The verifier will now get some
secret key that has been used to encrypt the query matrix,
and this encrypted query matrix will now be the com-
mon reference string (we have moved the protocol to the
non-interactive setting). The main requirement for the
encryption system is linear homomorphism; specifically,
the prover needs to be able to compute the encryption
QT π using only the CRS, which is the encryption of Q.

Currently, SNARKs instantiate this linearly homomor-
phic encryption using pairing-based cryptography, which
as mentioned, can be quite slow. This has become a prob-
lem in practice; for example, libsnark verification times
(as used in Zcash) are quite high (about 40 sec on stan-
dard hardware).

Instead of using pairings, we use newer lattice-based
cryptographic primitives, based on the hardness of the
learning with errors (LWE) problem, to build zkSNARKs
that are faster to verify and quantum resistant. The
speedup should come mostly from the fact that instead
of doing many group exponentiations, we will be do-
ing simpler lattice-based operations (matrix operations
on 64-bit integers) which can be data-level parallelizable,
perhaps through SIMD and even eventually GPUs.

2 Implementation

We use the construction described in [BISW17, Con-
struction 4.5] to instantiate a SNARG from just a Lin-
ear PCP and a linear-only vector encryption system. We
specifically use the scheme by Peikert, Vaikuntanathan,
and Waters [PVW08, §7.2], which is based on the LWE
problem introduced by Regev.

Libsnark uses a variety of representations of proving
systems, and provides a variety of methods of convert-
ing statements in one system to statements in another.
We’ve chosen as our starting point the rank-one con-
straint system, because it is broadly used and there are
many other, more useful representations that can be com-
piled to R1CS. Each constraint in an R1CS is a triple
of three vectors, A,B,C, and we can say that s satisfies
that constraint if (As)(Bs) = Cs. For a given statement,
we have many constraints, each of which has a triple
(A,B,C).

We then convert these into a quadratic arithmetic pro-
gram (QAP), which represents all of the constraints in
just three sets of polynomials (A′, B′ and C′), so that the
polynomials in A′ evaluated at some x = i give the i’th
constraint’s A vector, and likewise for B and C. This
conversion is done using Lagrange interpolation. The
reason for doing this is to enable a faster check on the
constraints, as follows.

We can now, given some candidate solution s we wish
to check, in one step, compute A′s ·B′s−C′s and check
that the result is 0 at x = 1,2, . . .. In fact, this is further

2



optimized; we can actually just check that A′s ·B′s−C′s
is divisible by Z = (x−1)(x−2) . . . .

So, our actual implementation uses the system that lib-
snark already has to generate these polynomials from an
R1CS. We then apply our ’crypto compiler’, and result
in a system roughly as follows:

1. In setup, we create a CRS that is the encryption of
each of A′,B′,C′.

2. The prover, using its witness, does homomorphic
operations on the CRS to create an answer c = E().

3. The verifier decrypts c into s, and then checks that
A′s+B′s−C′s = 0 at x = 1,2 . . ., using the divisi-
bility technique described above.

For the implementing matrix operations, we use Victor
Shoup’s ”Number Theory Library” (NTL). It has opti-
mized implementations of matrices and vectors mod p,
(mat_ZZ_p and vec_ZZ_p), that we leverage.

We also started with a small piece Leo Ducas’ Fully
Homomorphic Encryption Library (FHEW); specifically,
we used the implementation of the LWE encryption as a
starting point for scalar encryption.

3 Completed work

As a proof of concept, we first changed the encryption
scheme so that it used Regev encryption naively; that is,
each query was for a single element in the field Fp where
p is relatively small (we used p = 1009). While this is
not secure, it allowed us to test our encryption and de-
cryption routines, and confirm that the homomorphism
is working correctly.

In the process, many of the consistency checks that
were necessary in the pairing setting were no longer nec-
essary. For example, we didn’t need to check if the same
coefficients were being used, because the prover couldn’t
change them in the encrypted CRS anyway, since the en-
cryption scheme is semantically secure.

Next, we implemented the PVW encryption scheme.
This is essentially a vectorized form of basic Regev en-
cryption, in which we encrypt many plaintext field ele-
ments at once using a secret key that is a matrix. For our
purposes, this is useful because we can now implement
encryption and decryption in simple matrix operations on
64-bit integers. We tested the scheme, and ensured that
we maintained all necessary homomorphic properties, in
isolation from libsnark.

We then combined the PVW scheme, which was our
instantiation of the linear-only vector encryption scheme
required in BISW’s construction, and the QAP system
that libsnark provides, to create a working prototype
lattice-based SNARK.

4 Results

One significant goal was to make verification times
faster. We have succeeded in that end; our implementa-
tion appears to verify circuits of sizes that we have been
able to test so far more quickly than the pairing-based im-
plementation, and the verification time should be essen-
tially constant even as we make the circuits much larger.
In some small circuits, our verification times are up to 6x
faster than the current ones. Our prover time seems to be
on par with the current implementation, but as we scale
the sizes, it appears to grow more rapidly than we’d like.

Another key question that we seek to answer in this
implementation is: what parameters to this new lattice-
base zkSNARK system are practical, and what kind of
performance can we achieve while maintaining 128-bit
security?

The parameters of interest are p, the plaintext modu-
lus, q, the ciphertext modulus, `, the number of queries,
and m and n, where the encrypted matrices are m×n.

For semantic security to hold, according to BISW17
Thm 4.13, we need m ≥ 3(n + `) logq. We also need
q > p2m. Finally, we need n to be large enough to main-
tain correctness. The larger the circuit we want to verify,
the larger the plaintext modulus we need, which then in-
creases all the other parameters.

There’s a significant amount of circularity in the de-
pendencies between these parameters. We are still only
able to compute circuits with at most 200 gates and 200
inputs, because we haven’t found a good way to deal with
very large parameters, particularly m.

We have also found that our setup time is much much
larger than the pairing based implementation. While it’s
generally safe to disregard this as a serious penalty be-
cause the setup of the CRS is generally seen as a one-
time cost, the setup is becoming so drastically expensive
that it becomes difficult to practically test the implemen-
tation. So far, our analysis of why setup is so expensive
has yielded only the large size of the randomly generated
matrix as a source of the problem.

5 Limitations and Future work

A significant barrier to real-world use of the system is
that our SNARK is not publicly verifiable yet. Adapt-
ing the scheme to the public verification setting will take
significantly more work, both in the construction and im-
plementation.

We are currently working on, and hope to complete
soon, a working example of the verification of a SHA256
hash. This is a large circuit (about 20,000 gates), and we
haven’t yet figured out exactly how to push this prototype
to the point where it can handle that size. Most impor-
tantly, the parameters we are using are insufficient, and

3



it’s not exactly clear yet how to make them bigger with-
out introducing new issues.

We also have not tested performance in a controlled
and rigorous way yet, because only very recently did we
complete the fully vectorized implementation. Another
next step would be systematically assessing our efforts
at parameter tuning and determining what challenges still
remain.

Finally, there is a large amount of work that can still
be done in making the scheme more performant. Most
promisingly, since most of the expensive operations are
matrix-vector and matrix-matrix multiplications, there is
a large amount of advanced computer hardware strate-
gies (like using data-level parallelism/SIMD) that could
make the scheme practical.

References

[BISW17] an Boneh, Yuval Ishai, Amit Sahai, and
David J. Wu. Lattice-based SNARGs and their ap-
plication to more efficient obfuscation. In EURO-
CRYPT, 2017.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and
Brent Waters. A framework for efficient and com-
posable oblivious transfer. In CRYPTO, 2008.

[Reg05] Oded Regev. On lattices, learning with errors,
random linear codes, and cryptography. In STOC,
2005.

[SCIPR] SCIPR Lab. libsnark: a C++ library for zk-
SNARK proofs. Available: https://github.com/scipr-
lab/libsnark. First release Jun 2, 2014.

[Sim97] Daniel R. Simon. On the power of quantum
computation. SIAM J. Comput., 26(5), 1997.

4


