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Preface

The PBC library is a free portable C library allowing the rapid prototyping of pairing-based
cryptosystems. It provides an abstract interface to a cyclic group with a bilinear pairing, insulating the
programmer from mathematical details. Knowledge of elliptic curves is optional.

The PBC library is built on top of the GMP library, and the PBC API is strongly influenced by the GMP
API. Accordingly, this manual tries to imitate the look and feel of the GMP manual.

The PBC library homepage: https://crypto.stanford.edu/pbc/

The GMP library homepage: https://gmplib.org/

v



Chapter 1. Installing PBC

The PBC library needs the GMP library (https://gmplib.org/).

This build system has been tested and works on Linux and Mac OS X with a fink installation.

$ ./configure
$ make
$ make install

On Windows, the configure command requires a couple of options:

$ ./configure -disable-static -enable-shared

By default the library is installed in /usr/local/lib. On some systems, this may not be in the library
path. One way to fix this is to edit /etc/ld.so.conf and run ldconfig.

1.1. Simple Makefile

For speed and simplicity, I use simple.make during development. Naturally it is less portable.

$ make -f simple.make

PBC uses some GNU C extensions such as nested functions.

1.2. Quick start

We shall use the following notation. For our purposes, the pairing is a bilinear map from two cyclic
groups, G1 and G2 to a third group GT, where each group has prime order r.

Run pbc/pbc and type:

g := rnd(G1);
g;

The first line generates a random element g of the group G1, while the second prints out the value of g.
(The syntax was influenced by bc, an arbitrary precision calculator.) Next, enter:

h := rnd(G2);
h;
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Chapter 1. Installing PBC

This assigns h to a random element of the group G2. Actually, the default pairing pbc uses is symmetric
so G1 and G2 are in fact the same group, but in general they are distinct. To compute the pairing applied
to g and h, type:

pairing(g,h);

The order of both g and h is r. Let’s generate two random numbers between 1 and r:

a := rnd(Zr);
b := rnd(Zr);

By bilinearity, the resulting output of both of these lines should be identical:

pairing(g^a,h^b);
pairing(g,h)^(a*b);

This program has other features but the commands shown here should be enough to quickly and
interactively experiment with many pairing-based cryptosystems using real numbers.

1.3. Basics

Programs using the PBC library should include the file pbc.h:

#include <pbc.h>

and linked against the PBC library and the GMP library, e.g.

$ gcc program.c -L. -lpbc -lgmp

The file pbc.h already includes gmp.h.

PBC follows GMP in several respects:

• Output arguments generally precede input arguments.

• The same variable can be used as input and output in one call.

• Before a variable may be used it must be initialized exactly once. When no longer needed it must be
cleared. For efficiency, unnecessary initializating and clearing should be avoided.

• PBC variables ending with _t behave the same as GMP variables in function calls: effectively as
call-by references. In other words, as in GMP, if a function that modifies an input variable, that
variable remains modified when control return is returned to the caller.

• Like GMP, variables automatically allocate memory when needed. By default, malloc() and friends
are called but this can be changed.

• PBC functions are mostly reentrant.
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Chapter 1. Installing PBC

Since the PBC library is built on top of GMP, the GMP types are available. PBC types are similar to
GMP types. The following example is paraphrased from an example in the GMP manual, and shows how
to declare the PBC data type element_t.

element_t sum;
struct foo { element_t x, y; };
element_t vec[20];

GMP has the mpz_t type for integers, mpq_t for rationals and so on. In contrast, PBC uses the
element_t data type for elements of different algebraic structures, such as elliptic curve groups,
polynomial rings and finite fields. Functions assume their inputs come from appropriate algebraic
structures.

PBC data types and functions can be categorized as follows. The first two alone suffice for a range of
applications.

• element_t: elements of an algebraic structure.

• pairing_t: pairings where elements belong; can initialize from sample pairing parameters bundled
with PBC in the param subdirectory.

• pbc_param_t: used to generate pairing parameters.

• pbc_cm_t: parameters for constructing curves via the CM method; sometimes required by
pbc_param_t.

• field_t: algebraic structures: groups, rings and fields; used internally by pairing_t.

• a few miscellaneous functions, such as ones controlling how random bits are generated.

Functions operating on a given data type usually have the same prefix, e.g. those involving element_t

objects begin with element_.
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Chapter 2. Tutorial

This chapter walks through how one might implement the Boneh-Lynn-Shacham (BLS) signature
scheme using the PBC library. It is based on the file example/bls.c.

We have three groups G1, G2, GT of prime order r, and a bilinear map e that takes an element from G1
and an element from G2, and outputs an element of GT . We publish these along with the system
parameter g, which is a randomly chosen element of G2.

Alice wishes to sign a message. She generates her public and private keys as follows. Her private key is a
random element x of Zr, and her corresponding public key is gx.

To sign a message, Alice hashes the message to some element h of G1, and then outputs the signature hx.

To verify a signature σ, Bob checks that e(h,gx) = e(σ, g).

We now translate the above to C code using the PBC library.

2.1. BLS signatures

First we include pbc/pbc.h:

#include <pbc.h>

Next we initialize a pairing:

pairing_t pairing;
char param[1024];
size_t count = fread(param, 1, 1024, stdin);
if (!count) pbc_die("input error");
pairing_init_set_buf(pairing, param, count);

Later we give pairing parameters to our program on standard input. Any file in the param subdirectory
will suffice, for example:

$ bls < param/a.param

We shall need several element_t variables to hold the system parameters, keys and other quantities. We
declare them and initialize them,

element_t g, h;
element_t public_key, secret_key;
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Chapter 2. Tutorial

element_t sig;
element_t temp1, temp2;

element_init_G2(g, pairing);
element_init_G2(public_key, pairing);
element_init_G1(h, pairing);
element_init_G1(sig, pairing);
element_init_GT(temp1, pairing);
element_init_GT(temp2, pairing);
element_init_Zr(secret_key, pairing);

generate system parameters,

element_random(g);

generate a private key,

element_random(secret_key);

and the corresponding public key.

element_pow_zn(public_key, g, secret_key);

When given a message to sign, we first compute its hash, using some standard hash algorithm. Many
libraries can do this, and this operation does not involve pairings, so PBC does not provide functions for
this step. For this example, and our message has already been hashed, possibly using another library.

Say the message hash is "ABCDEF" (a 48-bit hash). We map these bytes to an element h of G1,

element_from_hash(h, "ABCDEF", 6);

then sign it:

element_pow_zn(sig, h, secret_key);

To verify this signature, we compare the outputs of the pairing applied to the signature and system
parameter, and the pairing applied to the message hash and public key. If the pairing outputs match then
the signature is valid.

pairing_apply(temp1, sig, g, pairing);
pairing_apply(temp2, h, public_key, pairing);
if (!element_cmp(temp1, temp2)) {

printf("signature verifies\n");
} else {

printf("signature does not verify\n");
}
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Chapter 2. Tutorial

2.2. Import/export

To be useful, at some stage the signature must be converted to bytes for storage or transmission:

int n = pairing_length_in_bytes_compressed_G1(pairing);
// Alternatively:
// int n = element_length_in_bytes_compressed(sig);
unsigned char *data = malloc(n);
element_to_bytes_compressed(data, sig);

On the other end, the signature must be decompressed:

element_from_bytes_compressed(sig, data);

Eliding _compressed in the above code will also work but the buffer data will be roughly twice as large.

We can save more space by using the x-coordinate of the signature only

int n = pairing_length_in_bytes_x_only_G1(pairing);
// Alternative:
// int n = element_length_in_bytes_x_only(sig);
unsigned char *data = malloc(n);
element_to_bytes_compressed(data, sig);

but then there is a complication during verification since two different points have the same x-coordinate.
One way to solve this problem is to guess one point and try to verify. If that fails, we try the other. It can
be shown that the pairing outputs of the two points are inverses of each other, avoiding the need to
compute a pairing the second time. (In fact, there are even better ways to handle this.)

int n = pairing_length_in_bytes_x_only_G1(pairing);
//int n = element_length_in_bytes_x_only(sig);
unsigned char *data = malloc(n);

element_to_bytes_x_only(data, sig);

element_from_bytes_x_only(sig, data)

pairing_apply(temp1, sig, g, pairing);
pairing_apply(temp2, h, public_key, pairing);

if (!element_cmp(temp1, temp2)) {
printf("signature verifies on first guess\n");

} else {
element_invert(temp1, temp1);
if (!element_cmp(temp1, temp2)) {

printf("signature verifies on second guess\n");
} else {

printf("signature does not verify\n");
}
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Chapter 2. Tutorial

}
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Chapter 3. Pairing functions

An application should first initialize a pairing object. This causes PBC to setup curves, groups and other
mathematical miscellany. After that, elements can be initialized and manipulated for cryptographic
operations.

Parameters for various pairings are included with the PBC library distribution in the param subdirectory,
and some are suitable for cryptographic use. Some programs in the gen subdirectory may be used to
generate parameters (see Chapter 7). Also, see the PBC website for many more pairing parameters.

Pairings involve three groups of prime order. The PBC library calls them G1, G2, and GT, and calls the
order r. The pairing is a bilinear map that takes two elements as input, one from G1 and one from G2,
and outputs an element of GT.

The elements of G2 are at least as long as G1; G1 is guaranteed to be the shorter of the two. Sometimes
G1 and G2 are the same group (i.e. the pairing is symmetric) so their elements can be mixed freely. In
this case the pairing_is_symmetric function returns 1.

Bilinear pairings are stored in the data type pairing_t. Functions that operate on them start with
pairing_.

3.1. Initializing pairings

To initialize a pairing from an ASCIIZ string:

pairing_t pairing;
pairing_init_set_str(pairing, s); // Where s is a char *.

The string s holds pairing parameters in a text format. The param subdirectory contains several
examples.

Alternatively, call:

pairing_t pairing;
pairing_init_pbc_param(pairing, param);

where param is an initialized pbc_param_t (see Chapter 5).

int pairing_init_set_str(pairing_t pairing, const char *s)
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Chapter 3. Pairing functions

Initialize pairing from parameters in a ASCIIZ string str Returns 0 on success, 1 on failure.

int pairing_init_set_buf(pairing_t pairing, const char *s, size_t len)

Same, but read at most len bytes. If len is 0, it behaves as the previous function. Returns 0 on success, 1 on
failure.

void pairing_init_pbc_param(struct pairing_s *pairing, pbc_param_t p)

Initialize a pairing with pairing parameters p.

void pairing_clear(pairing_t pairing)

Free the space occupied by pairing. Call whenever a pairing_t variable is no longer needed. Only call this
after all elements associated with pairing have been cleared, as they need information stored in the pairing
structure.

3.2. Applying pairings

The function pairing_apply can be called to apply a bilinear map. The order of the inputs is
important. The first, which holds the output, must be from the group GT. The second must be from G1,
the third from G2, and the fourth must be the pairing_t variable that relates them.

In some applications, the programmer may know that many pairings with the same G1 input will be
computed. If so, preprocessing should be used to avoid repeating many calculations saving time in the
long run. A variable of type pairing_pp_t should be declared, initialized with the fixed G1 element,
and then used to compute pairings:

pairing_pp_t pp;
pairing_pp_init(pp, x, pairing); // x is some element of G1
pairing_pp_apply(r1, y1, pp); // r1 = e(x, y1)
pairing_pp_apply(r2, y2, pp); // r2 = e(x, y2)
pairing_pp_clear(pp); // don’t need pp anymore

Never mix and match G1, G2, and GT groups from different pairings.

void pairing_pp_init(pairing_pp_t p, element_t in1, pairing_t pairing)
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Get ready to perform a pairing whose first input is in1, and store the results of time-saving precomputation in p.

void pairing_pp_clear(pairing_pp_t p)

Clear p. This should be called after p is no longer needed.

void pairing_pp_apply(element_t out, element_t in2, pairing_pp_t p)

Compute a pairing using in2 and the preprocessed information stored in p and store the output in out. The
inputs to the pairing are the element previously used to initialize p and the element in2.

void element_pairing(element_t out, element_t in1, element_t in2)

Computes a pairing: out = e(in1, in2), where in1, in2, out must be in the groups G1, G2, GT.

void element_prod_pairing(element_t out, element_t in1[], element_t in2[], int n)

Computes the product of pairings, that is out = e(in1[0], in2[0]) . . . e(in1[n-1], in2[n-1]). The arrays in1, in2
must have at least n elements belonging to the groups G1, G2 respectively, and out must belong to the group
GT.

3.3. Other pairing functions

int pairing_is_symmetric(pairing_t pairing)

Returns true if G1 and G2 are the same group.

int pairing_length_in_bytes_G1(pairing_t pairing)

Returns the length in bytes needed to represent an element of G1.
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Chapter 3. Pairing functions

int pairing_length_in_bytes_x_only_G1(pairing_t pairing)

Returns the length in bytes needed to represent the x-coordinate of an element of G1.

int pairing_length_in_bytes_compressed_G1(pairing_t pairing)

Returns the length in bytes needed to represent a compressed form of an element of G1. There is some
overhead in decompressing.

int pairing_length_in_bytes_G2(pairing_t pairing)

Returns the length in bytes needed to represent an element of G2.

int pairing_length_in_bytes_compressed_G2(pairing_t pairing)

Returns the length in bytes needed to represent a compressed form of an element of G2. There is some
overhead in decompressing.

int pairing_length_in_bytes_x_only_G2(pairing_t pairing)

Returns the length in bytes needed to represent the x-coordinate of an element of G2.

int pairing_length_in_bytes_GT(pairing_t pairing)

Returns the length in bytes needed to represent an element of GT.

int pairing_length_in_bytes_Zr(pairing_t pairing)

Returns the length in bytes needed to represent an element of Zr.
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Chapter 4. Element functions

Elements of groups, rings and fields are stored in the element_t data type. Variables of this type must
be initialized before use, and should be cleared after they are no longer needed.

The element_ functions must be used with caution. Just as division by zero does not make sense for
integers, some operations may not make sense for particular elements. For example, in a ring, one cannot
in general invert elements.

Another caveat is that many of these functions assume their arguments come from the same ring, group
or field. No implicit type casting is performed.

For debug builds, turn on run-time checks by defining PBC_DEBUG before including pbc.h:

#define PBC_DEBUG
#include <pbc.h>

Also, when PBC_DEBUG is defined, the following macros are active. Normally they are replaced with
empty statements.

PBC_ASSERT(expr, msg)

Macro: if expr evaluates to 0, print msg and exit.

PBC_ASSERT_MATCH2(a, b)

Macro: if elements a and b are from different fields then exit.

PBC_ASSERT_MATCH3(a, b, c)

Macro: if elements a, b and c are from different fields then exit.
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Chapter 4. Element functions

4.1. Initializing elements

When an element is initialized it is associated with an algebraic structure, such as a particular finite field
or elliptic curve group.

We use G1 and G2 to denote the input groups to the pairing, and GT for the output group. All have order
r, and Zr means the ring of integers modulo r. G1 is the smaller group (the group of points over the base
field). With symmetric pairings, G1 = G2.

void element_init_G1(element_t e, pairing_t pairing)

void element_init_G2(element_t e, pairing_t pairing)

void element_init_GT(element_t e, pairing_t pairing)

Initialize e to be an element of the group G1, G2 or GT of pairing.

void element_init_Zr(element_t e, pairing_t pairing)

Initialize e to be an element of the ring Z_r of pairing. r is the order of the groups G1, G2 and GT that are
involved in the pairing.

void element_init_same_as(element_t e, element_t e2)

Initialize e to be an element of the algebraic structure that e2 lies in.

void element_clear(element_t e)

Free the space occupied by e. Call this when the variable e is no longer needed.

4.2. Assigning elements

These functions assign values to elements. When integers are assigned, they are mapped to algebraic
structures canonically if it makes sense (e.g. rings and fields).
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Chapter 4. Element functions

void element_set0(element_t e)

Set e to zero.

void element_set1(element_t e)

Set e to one.

void element_set_si(element_t e, signed long int i)

Set e to i.

void element_set_mpz(element_t e, mpz_t z)

Set e to z.

void element_set(element_t e, element_t a)

Set e to a.

4.3. Converting elements

void element_to_mpz(mpz_t z, element_t e)

Converts e to a GMP integer z if such an operation makes sense

void element_from_hash(element_t e, void *data, int len)

Generate an element e deterministically from the len bytes stored in the buffer data.
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4.4. Element arithmetic

Unless otherwise stated, all element_t arguments to these functions must have been initialized to be
from the same algebraic structure. When one of these functions expects its arguments to be from
particular algebraic structures, this is reflected in the name of the function.

The addition and multiplication functions perform addition and multiplication operations in rings and
fields. For groups of points on an ellitpic curve, such as the G1 and G2 groups associated with pairings,
both addition and multiplication represent the group operation (and similarly both 0 and 1 represent the
identity element). It is recommended that programs choose and one convention and stick with it to avoid
confusion.

In contrast, the GT group is currently implemented as a subgroup of a finite field, so only multiplicative
operations should be used for GT.

void element_add(element_t n, element_t a, element_t b)

Set n to a + b.

void element_sub(element_t n, element_t a, element_t b)

Set n to a - b.

void element_mul(element_t n, element_t a, element_t b)

Set n = a b.

void element_mul_mpz(element_t n, element_t a, mpz_t z)

void element_mul_si(element_t n, element_t a, signed long int z)

Set n = a z, that is a + a + . . . + a where there are z a’s.

void element_mul_zn(element_t c, element_t a, element_t z)
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Chapter 4. Element functions

z must be an element of a integer mod ring (i.e. Z
n

for some n). Set c = a z, that is a + a + . . . + a where there
are z a’s.

void element_div(element_t n, element_t a, element_t b)

Set n = a / b.

void element_double(element_t n, element_t a)

Set n = a + a.

void element_halve(element_t n, element_t a)

Set n = a/2

void element_square(element_t n, element_t a)

Set n = a2

void element_neg(element_t n, element_t a)

Set n = -a.

void element_invert(element_t n, element_t a)

Set n to the inverse of a.
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4.5. Exponentiating elements

Exponentiation and multiexponentiation functions. If it is known in advance that a particular element
will be exponentiated several times in the future, time can be saved in the long run by first calling the
preprocessing function:

element_pp_t g_pp;
element_pp_init(g_pp, g);
element_pp_pow(h, pow1, g_pp); // h = g^pow1
element_pp_pow(h, pow2, g_pp); // h = g^pow2
element_pp_pow(h, pow3, g_pp); // h = g^pow3
element_pp_clear(g_pp);

void element_pow_mpz(element_t x, element_t a, mpz_t n)

Set x = an, that is a times a times . . . times a where there are n a’s.

void element_pow_zn(element_t x, element_t a, element_t n)

Set x = an, where n is an element of a ring Z
N

for some N (typically the order of the algebraic structure x lies in).

void element_pow2_mpz(element_t x, element_t a1, mpz_t n1, element_t a2, mpz_t n2)

Sets x = a1n1 a2n2, and is generally faster than performing two separate exponentiations.

void element_pow2_zn(element_t x, element_t a1, element_t n1, element_t a2, element_t n2)

Also sets x = a1n1 a2n2, but n1, n2 must be elements of a ring Z
n

for some integer n.

void element_pow3_mpz(element_t x, element_t a1, mpz_t n1, element_t a2, mpz_t n2, element_t a3,
mpz_t n3)

Sets x = a1n1 a2n2 a3n3, generally faster than performing three separate exponentiations.
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void element_pow3_zn(element_t x, element_t a1, element_t n1, element_t a2, element_t n2, element_t
a3, element_t n3)

Also sets x = a1n1 a2n2 a3n3, but n1, n2, n3 must be elements of a ring Z
n

for some integer n.

void element_pp_init(element_pp_t p, element_t in)

Prepare to exponentiate an element in, and store preprocessing information in p.

void element_pp_clear(element_pp_t p)

Clear p. Should be called after p is no longer needed.

void element_pp_pow(element_t out, mpz_t power, element_pp_t p)

Raise in to power and store the result in out, where in is a previously preprocessed element, that is, the second
argument passed to a previous element_pp_init call.

void element_pp_pow_zn(element_t out, element_t power, element_pp_t p)

Same except power is an element of Z
n

for some integer n.

void element_dlog_brute_force(element_t x, element_t g, element_t h)

Computes x such that gx = h by brute force, where x lies in a field where element_set_mpz() makes sense.

void element_dlog_pollard_rho(element_t x, element_t g, element_t h)

Computes x such that gx = h using Pollard rho method, where x lies in a field where element_set_mpz()
makes sense.
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Chapter 4. Element functions

4.6. Comparing elements

These functions compare elements from the same algebraic structure.

int element_is1(element_t n)

Returns true if n is 1.

int element_is0(element_t n)

Returns true if n is 0.

int element_cmp(element_t a, element_t b)

Returns 0 if a and b are the same, nonzero otherwise.

int element_is_sqr(element_t a)

Returns nonzero if a is a perfect square (quadratic residue), zero otherwise.

int element_sgn(element_t a)

int element_sign(element_t a)

If a is zero, returns 0. For nozero a the behaviour depends on the algebraic structure, but has the property that
element_sgn(a) = -element_sgn(-a) and element_sgn(a) = 0 implies a = 0 with overwhelming probability.

4.7. Element I/O

Functions for producing human-readable outputs for elements. Converting elements to and from bytes
are discussed later.
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Chapter 4. Element functions

size_t element_out_str(FILE * stream, int base, element_t e)

Output e on stream in base base. The base must be between 2 and 36.

int element_printf(const char *format, . . . )

int element_fprintf(FILE * stream, const char *format, . . . )

int element_snprintf(char *buf , size_t size, const char *fmt, . . . )

int element_vsnprintf(char *buf , size_t size, const char *fmt, va_list ap)

Same as printf family except also has the B conversion specifier for types of element_t, and Y , Z conversion
specifiers for mpz_t. For example if e is of type element_t then

element_printf("%B\n", e);

will print the value of e in a human-readable form on standard output.

int element_snprint(char *s, size_t n, element_t e)

Convert an element to a human-friendly string. Behaves as snprintf but only on one element at a time.

int element_set_str(element_t e, const char *s, int base)

Set the element e from s, a null-terminated C string in base base. Whitespace is ignored. Points have the form
"[x,y]" or "O", while polynomials have the form "[a0,. . . ,an]". Returns number of characters read (unlike
GMP’s mpz_set_str). A return code of zero means PBC could not find a well-formed string describing an
element.

4.8. Random elements

Only works for finite algebraic structures. Effect on polynomial rings, fields of characteristic zero, etc.
undefined.
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See Section 6.1 for how PBC gets random bits.

void element_random(element_t e)

If the e lies in a finite algebraic structure, assigns a uniformly random element to e.

4.9. Element import/export

Functions for serializing and deserializing elements.

int element_length_in_bytes(element_t e)

Returns the length in bytes the element e will take to represent

int element_to_bytes(unsigned char *data, element_t e)

Converts e to byte, writing the result in the buffer data. The number of bytes it will write can be determined
from calling element_length_in_bytes(). Returns number of bytes written.

int element_from_bytes(element_t e, unsigned char *data)

Reads e from the buffer data, and returns the number of bytes read.

int element_to_bytes_x_only(unsigned char *data, element_t e)

Assumes e is a point on an elliptic curve. Writes the x-coordinate of e to the buffer data

int element_from_bytes_x_only(element_t e, unsigned char *data)

Assumes e is a point on an elliptic curve. Sets e to a point with x-coordinate represented by the buffer data.
This is not unique. For each x-coordinate, there exist two different points, at least for the elliptic curves in PBC.
(They are inverses of each other.)
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int element_length_in_bytes_x_only(element_t e)

Assumes e is a point on an elliptic curve. Returns the length in bytes needed to hold the x-coordinate of e.

int element_to_bytes_compressed(unsigned char *data, element_t e)

If possible, outputs a compressed form of the element e to the buffer of bytes data. Currently only implemented
for points on an elliptic curve.

int element_from_bytes_compressed(element_t e, unsigned char *data)

Sets element e to the element in compressed form in the buffer of bytes data. Currently only implemented for
points on an elliptic curve.

int element_length_in_bytes_compressed(element_t e)

Returns the number of bytes needed to hold e in compressed form. Currently only implemented for points on
an elliptic curve.

int element_item_count(element_t e)

For points, returns the number of coordinates. For polynomials, returns the number of coefficients. Otherwise
returns zero.

element_t element_item(element_t e, int i)

For points, returns nth coordinate. For polynomials, returns coefficient of xn. Otherwise returns NULL. The
element the return value points to may be modified.

element_t element_x(element_t a)
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Equivalent to element_item(a, 0).

element_t element_y(element_t a)

Equivalent to element_item(a, 1).
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Pairings are initialized from pairing parameters, which are objects of type pbc_param_t. Some
applications can ignore this data type because pairing_init_set_str() handles it behind the scenes:
it reads a string as a pbc_param_t, then initializes a pairing with these parameters.

int pbc_param_init_set_str(pbc_param_t par, const char *s)

Initializes pairing parameters from the string s. Returns 0 if successful, 1 otherwise.

int pbc_param_init_set_buf(pbc_param_t par, const char *s, size_t len)

Same, but read at most len bytes. If len is 0, it behaves as the previous function. Returns 0 if successful, 1
otherwise.

void pbc_param_out_str(FILE *stream, pbc_param_t p)

Write pairing parameters to ’stream’ in a text format.

void pbc_param_clear(pbc_param_t p)

Clear p. Call after p is no longer needed.

5.1. Param generation

These were used to prepare the sample parameters in the param subdirectory.

We label the pairing families with capital letters roughly in the order of discovery, so we can refer to
them easily. Type A is fastest. Type D is a good choice when elements should be short but is slower. Type
F has even shorter elements but is slower still. The speed differences are hardware-dependent, and also
change when preprocessing is used. Type B and C are unimplemented.

The pbc_cm_t data type holds CM parameters that are used to generate type D and G curves.
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void pbc_cm_init(pbc_cm_t cm)

Initializes cm.

void pbc_cm_clear(pbc_cm_t cm)

Clears cm.

int pbc_cm_search_d(int (*callback)(pbc_cm_t, void *), void *data, unsigned int D, unsigned int
bitlimit)

For a given discriminant D, searches for type D pairings suitable for cryptography (MNT curves of embedding
degree 6). The group order is at most bitlimit bits. For each set of CM parameters found, call callback with
pbc_cm_t and given void *. If the callback returns nonzero, stops search and returns that value. Otherwise
returns 0.

int pbc_cm_search_g(int (*callback)(pbc_cm_t, void *), void *data, unsigned int D, unsigned int
bitlimit)

For a given discriminant D, searches for type G pairings suitable for cryptography (Freeman curve). The group
order is at most bitlimit bits. For each set of CM parameters found, call callback with pbc_cm_t and given
void *. If the callback returns nonzero, stops search and returns that value. Otherwise returns 0.

void pbc_param_init_a_gen(pbc_param_t par, int rbits, int qbits)

Generate type A pairing parameters and store them in p, where the group order r is rbits long, and the order of
the base field q is qbits long. Elements take qbits to represent.

To be secure, generic discrete log algorithms must be infeasible in groups of order r, and finite field discrete log
algorithms must be infeasible in finite fields of order q^2, e.g. rbits = 160, qbits = 512.

The file param/a.param contains parameters for a type A pairing suitable for cryptographic use.

void pbc_param_init_i_gen(pbc_param_t par, int group_size)
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Generate type I pairing parameters and store them in p, where the group order is at least 2^group_size.

To be as secure as 64 bit symmetric encryption, group_size may be 150. To get 128 bit symmetric secure level,
group_size may be 696.

The file param/i.param contains parameters for a type I pairing suitable for cryptographic use.

void pbc_param_init_a1_gen(pbc_param_t param, mpz_t n)

Generate type A1 pairing parameters and store them in p. The group order will be n. The order of the base field
is a few bits longer. To be secure, generic discrete log algorithms must be infeasible in groups of order n, and
finite field discrete log algorithms must be infeasible in finite fields of order roughly n2. Additionally, n should
be hard to factorize.

For example: n a product of two primes, each at least 512 bits.

The file param/a1.param contains sample parameters for a type A1 pairing, but it is only for benchmarking:
it is useless without the factorization of n, the order of the group.

void pbc_param_init_d_gen(pbc_param_t p, pbc_cm_t cm)

Type D curves are generated using the complex multiplication (CM) method. This function sets p to a type D
pairing parameters from CM parameters cm. Other library calls search for appropriate CM parameters and the
results can be passed to this function.

To be secure, generic discrete log algorithms must be infeasible in groups of order r, and finite field discrete log
algorithms must be infeasible in finite fields of order q6. For usual CM parameters, r is a few bits smaller than q.

Using type D pairings allows elements of group G1 to be quite short, typically 170-bits. Because of a certain
trick, elements of group G2 need only be 3 times longer, that is, about 510 bits rather than 6 times long. They
are not quite as short as type F pairings, but much faster.

I sometimes refer to a type D curve as a triplet of numbers: the discriminant, the number of bits in the prime q,
and the number of bits in the prime r. The gen/listmnt program prints these numbers.

Among the bundled type D curve parameters are the curves 9563-201-181, 62003-159-158 and
496659-224-224 which have shortened names param/d201.param, param/d159.param and
param/d225.param respectively.

See gen/listmnt.c and gen/gendparam.c for how to generate type D pairing parameters.
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void pbc_param_init_e_gen(pbc_param_t p, int rbits, int qbits)

Generate type E pairing parameters and store them in p, where the group order r is rbits long, and the order of
the base field q is qbits long. To be secure, generic discrete log algorithms must be infeasible in groups of order
r, and finite field discrete log algorithms must be infeasible in finite fields of order q, e.g. rbits = 160, qbits =
1024.

This pairing is just a curiosity: it can be implemented entirely in a field of prime order, that is, only arithmetic
modulo a prime is needed and there is never a need to extend a field.

If discrete log in field extensions are found to be substantially easier to solve than previously thought, or
discrete log can be solved in elliptic curves as easily as they can be in finite fields, this pairing type may
become useful.

void pbc_param_init_f_gen(pbc_param_t p, int bits)

Generate type F pairing parameters and store them in p. Both the group order r and the order of the base field q
will be roughly bits-bit numbers. To be secure, generic discrete log algorithms must be infeasible in groups of
order r, and finite field discrete log algorithms must be infeasible in finite fields of order q^12, e.g. bits = 160.

Type F should be used when the top priority is to minimize bandwidth (e.g. short signatures). The current
implementation makes them slow.

If finite field discrete log algorithms improve further, type D pairings will have to use larger fields, but type F
can still remain short, up to a point.

void pbc_param_init_g_gen(pbc_param_t p, pbc_cm_t cm)

Type G curves are generated using the complex multiplication (CM) method. This function sets p to a type G
pairing parameters from CM parameters cm. They have embedding degree 10.

To be secure, generic discrete log algorithms must be infeasible in groups of order r, and finite field discrete log
algorithms must be infeasible in finite fields of order q6. For usual CM parameters, r is a few bits smaller than q.

They are quite slow at the moment so for now type F is a better choice.

The file param/g149.param contains parameters for a type G pairing with 149-bit group and field sizes.
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Random number generation, memory allocation, logging.

6.1. Random bits

The first time PBC is asked to generate a random number, the library will try to open the file
/dev/urandom as a source of random bits. If this fails, PBC falls back to a deterministic random
number generator (which is of course completely useless for cryptography).

It is possible to change the file used for random bits. Also, explicitly selecting the deterministic random
number generator will suppress the warning.

On Windows, by default, PBC uses the Microsoft Crypto API to generate random bits.

void pbc_random_set_file(char *filename)

Sets filename as a source of random bytes. For example, on Linux one might use /dev/random.

void pbc_random_set_deterministic(unsigned int seed)

Uses a determinstic random number generator, seeded with seed.

void pbc_random_set_function(void (*fun)(mpz_t, mpz_t, void *), void *data)

Uses given function as a random number generator.

void pbc_mpz_random(mpz_t z, mpz_t limit)

Selects a random z that is less than limit.

void pbc_mpz_randomb(mpz_t z, unsigned int bits)
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Selects a random bits-bit integer z.

6.2. Custom allocation

Like GMP, PBC can be instructed to use custom memory allocation functions. This must be done before
any memory allocation is performed, usually at the beginning of a program before any other PBC
functions have been called.

Also like GMP, the PBC wrappers around malloc and realloc will print a message on standard error
and terminate program execution if the calls fail. Replacements for these functions should act similarly.

However, unlike GMP, PBC does not pass the number of bytes previously allocated along with the
pointer in calls to realloc and free.

void pbc_set_memory_functions(void *(*malloc_fn)(size_t), void *(*realloc_fn)(void *, size_t), void
(*free_fn)(void *))

Set custom allocation functions. The parameters must be function pointers to drop-in replacements for malloc,
realloc and free, except that malloc and realloc should terminate the program on failure: they must not return in
this case.

6.3. Logging

int pbc_set_msg_to_stderr(int i)

By default error messages are printed to standard error. Call pbc_set_msg_to_stderr(0) to suppress
messages.

void pbc_die(const char *err, . . . )

Reports error message and exits with code 128.

void pbc_info(const char *err, . . . )
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Reports informational message.

void pbc_warn(const char *err, . . . )

Reports warning message.

void pbc_error(const char *err, . . . )

Reports error message.
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Several binaries and curve parameters are bundled with the PBC library, such as the pbc program.

The param subdirectory contains pairing parameters one might use in a real cryptosystem. Many of the
test programs read the parameters from files such as these on standard input, for example:

$ benchmark/benchmark < param/c159.param
$ example/bls < param/e.param

7.1. Pairing-based calculator

The pbc subdirectory contains the pairing-based calculator, pbc, which is loosely based on bc, a
well-known arbitrary precision calculator.

See pairing_test.pbc for an example script. Some differences: the assignment operator is :=, and
newlines are ordinary whitespace and not statement terminators.

If started with the -y option, the syntax is compatible with bc: newlines are treated as statement
terminators and = is assignment. Additionally, pbc displays a prompt. This mode may be easier for
beginners.

Initially, the variables G1, G2, GT and Zr are represent groups associated with a particular A pairing.

An element is represented with a tree of integers, such as [[1,2], 3], or 4.

Assignments such as variable := expression; return the value of the variable.

The arithmetic operators +, -, /, *, ^ have the standard precedence. The C comparison operators
and ternary operator are available.

Each statement should be terminated by a semicolon.

Comments are the same as in (original) C, or begin with "#" and end at a newline.

Some of the pbc functions:

init_pairing_A()

Set the variables G1, G2, GT and Zr to the groups in a particular A pairing:
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init_pairing_A();

Other sample pairings can be used by replacing A with one of D, E, F, G.

rnd(G)

Returns a random element of an algebraic structure G, e.g:

g := rnd(Zr);

Synonym: random.

pairing(g, h)

Returns the pairing applied to g and h. The element g must be an element of G1 and h of G2, e.g:

pairing(rnd(G1), rnd(G2));

G(g)

Maps an element g to element of the field G, e.g:

Zr(123);
GT([456, 789]);

7.2. Parameter generation

Programs that generate pairing parameters are located in the gen subdirectory. Some of the programs are
already functional enough to be used to find parameters for real applications. I need to write more
documentation first; for now, read the source!

listmnt

Searches for discriminants D that lead to MNT curves with subgroups of prime order.

genaparam, gena1param, gendparam, geneparam, genfparam, gengparam

Prints parameters for a curve suitable for computing pairings of a given type. The output can be fed
to some of the other test programs. The programs gendparam and gengparam should be given a
discriminant as the first argument.

hilbertpoly

Prints the Hilbert polynomial for a given range of discriminants. Computing the Hilbert polynomial
is an intermediate step when generating type D parameters.
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7.3. Example cryptosystems

In the example subdirectory there are various programs that read curve parameters on standard input
and perform computations that would be required in a typical implementation of a pairing-based
cryptosystem. Sample schemes include:

• Boneh-Lynn-Shacham short signatures

• Hess identity-based signatures

• Joux tripartite Diffie-Hellman

• Paterson identity-based signatures

• Yuan-Li identity-based authenticated key agreement

• Zhang-Kim identity-based blind/ring signatures

• Zhang-Safavi-Naini-Susilo signatures

More work would be required to turn these programs into real applications.

7.4. Benchmarks

I use the programs in the benchmark subdirectory to measure running times of pairings, and also RSA
decryptions.

The benchmark program takes pairing parameters on standard input and reports the average running
time of the pairing over 10 runs, while timersa estimates the time required to perform one 1024-bit
RSA decryption.
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The source code is organized by subdirectories:

include: Headers describing the official API. Headers in other places are for internal use only.

arith: Finite fields: modular arithmetic, polynomial rings, and polynomial rings modulo a polynomial.
Finite fields of low characteristic are unsupported.

ecc: Elliptic curve generation, elliptic curve groups and pairings. One source file is dedicated to each
type of pairing, containing specialized optimizations. Some of the code requires arbitrary precision
complex numbers, which also live here but should be moved elsewhere one day.

misc: Dynamic arrays, symbol tables, benchmarking, logging, debugging, other utilities.

gen: Programs that generate pairing parameters and list Hilbert polynomials. These were used to prepare
the samples in the param directory.

example: Example programs showing how to use the library.

guru: Tests, experimental code.

8.1. Groups, rings, fields

Algebraic structures are represented in the field_t data type, which mostly contains pointers to
functions written to perform operations such as addition and multiplication in that particular group, ring
or field:

struct field_s {
...
void (*init)(element_ptr);
void (*clear)(element_ptr);
...
void (*add)(element_ptr, element_ptr, element_ptr);
void (*sub)(element_ptr, element_ptr, element_ptr);
void (*mul)(element_ptr, element_ptr, element_ptr);
...

};
typedef struct field_s *field_ptr;
typedef struct field_s field_t[1];
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The name algebraic_structure_t is arguably more accurate, but far too cumbersome. It may help if
one views groups and rings as handicapped fields.

The last two lines of the above code excerpt show how GMP and PBC define data types: they are arrays
of length one so that when a variable is declared, space is automatically allocated for it on the stack. Yet
when used as a argument to a function, a pointer is passed, thus there is no need to explicitly allocate and
deallocate memory, nor reference and dereference variables.

Each element_t contains a field named field to such a field_t variable. The only other field is
data, which stores any data needed for the implementation of the particular algebraic structure the
element resides in.

struct element_s {
struct field_s *field;
void *data;

};

When an element_t variable is initialized, field is set appropriately, and then the initialization specific
to that field is called to complete the initialization. Here, a line of code is worth a thousand words:

void element_init(element_t e, field_ptr f) {
e->field = f;
f->init(e);

}

Thus during a call to one of the element_ functions, the field pointer is followed then the appropriate
routine is executed. For example, modular addition results when the input element is an element of a
finite field, while polynomial addition is performed for elements of a polynomial ring and so on.

void element_add(element_t n, element_t a, element_t b) {
n->field->add(n, a, b);

}

My design may seem dangerous because if a programmer inadvertently attempts to add a polynomial and
a point on an elliptic curve, say, the code will compile without warnings since they have the same data
type.

However I settled on having a catch-all “glorified void *” element_t because I wanted to

• extend a field an arbitrary number of times (though in practice, currently I only need to extend a field
twice at most),

• switch fields easily, so for example a program that benchmarks addition in polynomial rings can be
trivially modified to benchmark addition in a group, and

• interchange different implementations of the same algebraic structure, for example, compare
Montgomery representation versus a naive implementation of integer modulo rings.
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Additionally, defining PBC_DEBUG catches many type mismatches.

In mathematics, groups, rings and fields should be distinguished, but for implmentation, it is simplest
lump them together under the same heading. In any event, distinct data types may lead to a false sense of
security. Fields of prime order with different moduli would still fall under the same data type, with
unpleasant results if their elements are mistakenly mixed.

I have vague plans to add flags to field_t describing the capabilities of a particular field_t. These
flags would be set during initialization, and would indicate for example whether one can invert every
nonzero element, whether there are one or two operations (that is, group versus ring), whether the field is
an integer mod ring, polynomial ring, or polynomial mod ring, and so on. Once in place, more runtime
checks can be performed to avoid illegal inversion and similar problems.

Another option is to introduce data types for each of the four pairing-related algebraic structures, namely
G1, G2, GT and Zr, as these are the only ones needed for implementing pairing-based cryptosystems.

An alternative was to simply use void * instead of element_t and require the programmer to pass the
field as a parameter, e.g. element_add(a, b, c, F_13), but I decided the added annoyance of
having to type this extra variable every time negated any benefits, such as obviating the need for the
field pointer in struct element_s, even if one ignores the more serious problem that runtime type
checking is considerably harder, if not impossible.

I suppose one could write a preprocessor to convert one type of notation to the other, but I would like the
code to be standard C. (On the other hand, as Hovav Shacham suggested, it may be nice to eventually
have a converter that takes human-friendly infix operator expressions like a = (b + c) * d and
outputs the assembly-like element_ equivalents.)

8.2. Internal randomness

Some algorithms require a quadratic nonresidue in a given field. These are computed lazily: The first
time a quadratic nonresidue is requested, one is generated at random, using the same source of random
bits as other PBC random functions. [Which reminds me, should I get rid of the nqr field and instead
have it as part of the data field in struct field_s?]

In fieldquadratic.c, a quadratic field extension is constructed with a square root of this randomly
generated quadratic nonresidue in the base field. Thus for a nondeterminstic source of random bits, the
same field may be constructed differently on different runs.

To construct the same field the same way every time, one must record the quadratic nonresidue generated
from one run, and call field_set_nqr() every time this particular construction of a quadratic field
extension is desired. Another use for this function is to save time by setting the quadratic nonresidue to
some precomputed value.
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Similarly, for higher degree extensions, a random irreducible polynomial may be chosen to construct it,
but this must be recorded if the same construction is later required.

This happens behind the scenes in PBC.

8.3. Type A internals

Type A pairings are constructed on the curve y2 = x3 + x over the field F_q for some prime q = 3 mod 4.
Both G1 and G2 are the group of points E(F_q), so this pairing is symmetric. It turns out #E(F_q) = q + 1
and #E(F_q2) = (q + 1)2. Thus the embedding degree k is 2, and hence GT is a subgroup of F_q^2. The
order r is some prime factor of q + 1.

Write q + 1 = r * h. For efficiency, r is picked to be a Solinas prime, that is, r has the form 2a +- 2b +- 1
for some integers 0 < b < a.

Also, we choose q = -1 mod 12 so F_q2 can be implemented as F_q[i] (where i = sqrt(-1)) and since q =
-1 mod 3, cube roots in F_q are easy to compute. This latter feature may be removed because I have not
found a use for it yet (in which case we only need q = -1 mod 4).

a_param struct fields:

exp2, exp1, sign1, sign0, r:
r = 2^exp2 + sign1 * 2^exp1 + sign0 * 1 (Solinas prime)

q, h:
r * h = q + 1
q is a prime, h is a multiple of 12 (thus q = -1 mod 12)

Type A1 uses the same equation, but have different fields since the library is given r and cannot choose it.

a1_param struct fields:

p, n, l:
p + 1 = n * l
p is prime, same as the q in a_param, n is the order of the group.

8.4. Type B internals

Unimplemented. Similar to type A. The curve y2 = x3 + 1 over the field F_q for some prime q = 2 mod 3,
which implies cube roots in F_q are easy to compute, though we can achieve this for type A pairings by
constraining q appropriately. I recommend requiring q = 3 mod 4 as well, so that -1 is a quadratic
nonresidue.
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The lack of an x term simplifies some routines such as point doubling.

It turns out we must choose between symmetry or efficiency due to the nature of a certain optimization.

8.5. Type C internals

Unimplemented. The supersingular curves y2 = x3 + 2x + 1 and y2 = x3 + 2x - 1 over a field of
characteristic 3. Discussed at length by Boneh, Lynn, and Shacham, "Short signatures from the Weil
pairing". Many optimizations can be applied to speed up these pairings; see Barreto et al., "Efficient
algorithms for pairing-based cryptosystems", but sadly, an attack due to Coppersmith makes these curves
less attractive.

8.6. Type D internals

These are ordinary curves of with embedding degree 6, whose orders are prime or a prime multiplied by
a small constant.

A type D curve is defined over some field F_q and has order h * r where r is a prime and h is a small
constant. Over the field F_q6 its order is a multiple of r2.

Typically the order of the curve E is around 170 bits, as is F_q, the base field, thus qk is around the
1024-bit mark which is commonly considered good enough.

d_param struct fields:

q F_q is the base field
n # of points in E(F_q)
r large prime dividing n
h n = h * r
a E: y^2 = x^3 + ax + b
b
nk # of points in E(F_q^k)
hk nk = hk * r * r
coeff0 coefficients of a monic cubic irreducible over F_q
coeff1
coeff2
nqr quadratic nonresidue in F_q

These were discovered by Miyaji, Nakabayashi and Takano, "New explicit conditions of elliptic curve
traces for FR-reduction".
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8.7. Type E Internals

The CM (Complex Multiplication) method of constructing elliptic curves starts with the Diophantine
equation

DV^2 = 4q - t^2

If t = 2 and q = D r2 h2 + 1 for some prime r (which we choose to be a Solinas prime) and some integer h,
we find that this equation is easily solved with V = 2rh.

Thus it is easy to find a curve (over the field F_q) with order q - 1. Note r2 divides q - 1, thus we have an
embedding degree of 1.

Hence all computations necessary for the pairing can be done in F_q alone. There is never any need to
extend F_q.

As q is typically 1024 bits, group elements take a lot of space to represent. Moreover, many
optimizations do not apply to this type, resulting in a slower pairing.

e_param struct fields:

exp2, exp1, sign1, sign0, r:
r = 2^exp2 + sign1 * 2^exp1 + sign0 * 1 (Solinas prime)

q, h
q = h r^2 + 1 where r is prime, and h is 28 times a perfect square

a, b
E: y^2 = x^3 + ax + b

8.8. Type F internals

Using carefully crafted polynomials, k = 12 pairings can be constructed. Only 160 bits are needed to
represent elements of one group, and 320 bits for the other.

Also, embedding degree k = 12 allows higher security short signatures. (k = 6 curves cannot be used to
scale security from 160-bits to say 256-bits because finite field attacks are subexponential.)

f_param struct fields:

q:
The curve is defined over Fq

r:
The order of the curve.

40



Chapter 8. PBC internals

b:
E: y^2= x^3 + b

beta:
A quadratic nonresidue in Fq: used in quadratic extension.

alpha0, alpha1:
x^6 + alpha0 + alpha1 sqrt(beta) is irreducible: used in sextic extension.

Discovered by Barreto and Naehrig, "Pairing-friendly elliptic curves of prime order".

8.9. Type G Internals

Another construction based on the CM method.

g_param struct fields:

q, n, h, r:
h * r = n is the order of E(F_q)

a, b:
E: y^2 = x^3 + ax + b

nk:
#E(F_q^10)

hk:
hk * r^2 = nk

coeff:
array of coefficients of polynomial used for quintic extension.

nqr:
a quadratic nonresidue

g_param struct fields:

Discovered by Freeman, "Constructing pairing-friendly elliptic curves with embedding degree 10."

8.10. Type I Internals

Type I pairings is symmetric, constructed on a supersingular curve y2 = x3 - x + 1 over a ternary
extension field F_{3m}. The embedding degree k is 6. Both G1 and G2 are the group of points
E(F_{3m}). GT is a subgroup of F_{36*m}. The group order is a prime number.

parameters:

m, t:
The ternary extension field is F(3)[x]/(x^m^ + x^t^ + 2).

n:
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the order of G1
n2:
n * n2 = number of points in E(F_{3^m^})

Introduced by Barreto et al, "Efficient Pairing Computation on Supersingular Abelian Varieties",
Designs, Codes and Cryptography, vol. 42, no. 3, pp. 239-271, Mar. 2007.

8.11. Testing functions

For testing, debugging, demonstrations and benchmarks. Declared in pbc_test.h:

void pbc_demo_pairing_init(pairing_t pairing, int argc, char **argv)

Initializes pairing from file specified as first argument, or from standard input if there is no first argument.

double pbc_get_time(void)

Returns seconds elapsed since the first call to this function. Returns 0 the first time.

EXPECT(condition)

Macro: if condition evaluates to 0 then print an error.

int pbc_err_count

Total number of failed EXPECT checks.

8.12. Dynamic arrays

The darray_t data type manages an array of pointers of type void \*, allocating more memory when
necessary. Declared in pbc_darray.h.

void darray_init(darray_t a)

42



Chapter 8. PBC internals

Initialize a dynamic array a. Must be called before a is used.

void darray_clear(darray_t a)

Clears a dynamic array a. Should be called after a is no longer needed.

void darray_append(darray_t a, void *p)

Appends p to the dynamic array a.

void * darray_at(darray_t a, int i)

Returns the pointer at index i in the dynamic array a.

void darray_remove_index(darray_t a, int n)

Removes the pointer at index i in the dynamic array a.

int darray_count(darray_t a)

Returns the number of pointers held in a.

8.13. Symbol tables

The symtab_t data type manages symbol tables where the keys are strings of type char * and the
values are pointers of type void \*.

At present, they are implemented inefficiently using dynamic arrays, but this will change if the need
arises. They are only used when reading a pbc_param_t from a string. Declared in pbc_symtab.h.

void symtab_init(symtab_t t)
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Initialize symbol table t. Must be called before t is used.

void symtab_clear(symtab_t t)

Clears symbol table t. Should be called after t is no longer needed.

void symtab_put(symtab_t t, void *value, const char *key)

Puts value at key in t.

int symtab_has(symtab_t t, const char *key)

Returns true if t contains key key.

void * symtab_at(symtab_t t, const char *key)

Returns pointer at key key in t.

8.14. Religious stances

I chose C because:

• GMP, which PBC requires and is also modeled on, is also written in C.

• PBC is intended to be a low-level portable cryptographic library. C is the least common denominator.
It should not be difficult to wrap PBC for other languages.

• Despite its drawbacks (I would appreciate operator overloading and genericity, and to a lesser extent
garbage collection), I’ve found few languages I like better. To quote Rob Pike, C is the desert island
language. (I also agree with his statement that OO languages conceptually provide little extra over
judicious use of function pointers in C.)

With respect to indentation, I’m migrating the code to follow Google C++ Style Guide
(http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml) to avoid having to switch styles all
the time. The code was originally written using my old style: 4-space indent with 1TBS (One True Brace
Style).
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I’d like to have no library dependencies (except standard C libraries), but then I’d have to write a large
integer library. Furthermore, I’d have to write it in assembly, and then port it.

To avoid this, I use an existing library. I selected GMP because the library’s focus is on multiprecision
arithmetic and nothing else, and it aims to be as fast as possible on many platforms. Another important
factor is that GMP is released under a free license.

On the other hand, GMP is written to deal with extremely large numbers, while I mostly only need
integers that are roughly between 160 and 2048 bits. It is possible a library specializing in numbers of
these sizes would be better for PBC.

I’m fond of GMP’s method for eliminating the need for the & and * operators most of the time by
declaring a typedef on arrays of size 1. I try to do the same with PBC for consistency, though this trick
does have drawbacks.

I would like to have GMP as the only library dependency, though I do not mind using other libraries so
long as they are optional. For example, one of the test programs is much easier to use if compiled with
the GNU readline library, but by default compiles without it and is still functional.

I dislike the C preprocessor. I like to place platform-specific code in separate files and let the build
system work out which one to use. Integer constants can be defined with enum instead. I intend to
minimize the number of #include statements in header files for PBC’s internal use as much as possible
(they should be in the .c files instead), and later perhaps even remove those annoying #ifndef

statements too. I grudgingly accept some macros for PBC’s debugging features.

I liberally use nested functions, a GNU C extension. I find their expressiveness so indispensable that I’m
willing to sacrifice portability for them.

The GNU libc manual (http://www.gnu.org/software/libc/manual/html_node/Reserved-Names.html)
states that data types ending in _t should not be used because they are reserved for future additions to C
or POSIX. On the other hand, I want to stay consistent with GMP, and ending data types with _t is
common practice.

45



Chapter 9. Security issues

Potential problems for the paranoid.

Truncated hashes

For points on an elliptic curve over the base field, element_from_hash() will truncate the input hash
until it can represent an x-coordinate in that field. (PBC then computes a corresponding y-coordinate.)
Ideally the hash length should be smaller than size of the base field and also the size of the elliptic curve
group.

Hashing to elements in field extensions does not take advantage of the fact that the extension has more
elements than the base field. I intend to rewrite the code so that for a degree n extension code, PBC splits
the hash into n parts and determine each polynomial coefficient from one ofthe pieces. At the moment
every coefficient is the same and depends on the whole hash.

This is harmless for the base field, because all the pairing types implemented so far use an integer mod
ring as the base field, rather than an extension of some low characteristic field.

Zeroed memory

Unlike OpenSSL, there are no functions to zero memory locations used in sensitive computations. To
some extent, one can use element_random() to overwrite data.

PRNG determinism

On platforms without /dev/urandom PBC falls back on a deterministic pseudo-random number
generator, except on Windows where it attempts to use the Microsoft Crypto API.

Also, /dev/urandom differs from /dev/random. A quote from its manpage:

A read from the /dev/urandom device will not block waiting for more entropy. As a result, if there is not
sufficient entropy in the entropy pool, the returned values are theoretically vulnerable to a cryptographic attack
on the algorithms used by the driver. Knowledge of how to do this is not available in the current non-classified
literature, but it is theoretically possible that such an attack may exist. If this is a concern in your application,
use /dev/random instead.
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Appendix A. Contributors

Ben Lynn wrote the original PBC library and documentation and is still maintaining and developing it.

Hovav Shacham wrote the multiexponentiation, sliding windows and preprocessed exponentiation
routines, Makefile improvements, and other enhancements. He also helps administer the mailing list.

Joseph Cooley wrote the GNU build system files, tested the library on Mac OS X, and added
miscellaneous improvements. Among other things, pairings can be read from memory buffer and most
compile-time warnings were removed.

Rob Figueiredo and Roger Khazan wrote changes which allow the PBC library to be compiled on
Windows (via mingw).

Dmitry Kosolapov sent in manual corrections, and wrote several cryptosystem demos.

John Bethencourt sent in many helpful patches, e.g. fixes that allow PBC to work on 64-bit platforms.

Paul Miller reported bugs, manual corrections and also wrote the Gentoo portage overlay for PBC.

If you’re not mentioned here but should be, please let me know! (blynn at cs dot stanford dot edu).
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