
HIPAA ABE Read Me

Nipun Dave

June 21, 2011

1 Introduction

The goal of the SHARPS project is to identify the security and privacy
challenges in the healthcare industry and to provide solutions for the same.
This readme provides information on the installation and implementation for
the following:

• Formalization of HIPAA law in Prolog

• Utilizing JLog to create an access control policy

• Performing attribute-based encryption of some data with the policy

• Decrypting the encrypted message using the attributes of the person
accessing it

• Online Demo

All the files are available on the Github IHI account. Eric Lam can provide
access to the github account. Once you have setup your github account and
also setup the keys on your computer, the files can be downloaded using the
following commands:

mkdir your_dir

cd your_dir

git init

git clone git@github.com:healthcareprivacy/IHI.git

Thereafter, create an eclipse project by importing the folders. Ensure
that your eclipse has Java EE Developer Tools installed. We use three en-
vironment variables in the code :- HIPAA HOME for the location of the
HIPAA ABE Encryption project (for example /̃Desktop/IHI/HIPAA ABE Encryption)

1

https://github.com/healthcareprivacy/IHI


and the other, ABE LIB LOCATION, specifying the location of the tools
folder in the Functional Encryption library (for example: /̃Desktop/ABE HIPAA/libfenc-
read-only/tools). The final one ABE DIR specifies the directory of ABE files

(for example:/̃Desktop/ABE) These are setup by using the following com-
mand:

export HIPAA_HOME=/path/to/the/projectfolder

export ABE_LIB_LOCATION =/path/to/the/library

export ABE_DIR =/path/to/ABEfolder

2 Formalization of HIPAA Law in Prolog

The HIPAA law states the conditions under which an entity can share some-
one’s data with another entity. This section of the law has been formalized
and expressed in Prolog according to the technique described in the paper
by Peifun Eric Lam, John Mitchell and Sharada Sundaram. The prolog files
are available on Google Code. It can be downloaded to the dir1 folder using
the following command:

svn checkout http://hipaa.googlecode.com/svn/trunk/ dir1

Each statement of the law is represented by the eight-tuple:

a = (Sender,Receiver, Owner, Purpose, Type,Message,Belief, Consent)

For our application, the type element has a constant value of PHI i.e. Per-
sonal Health Information. The other seven elements vary. We refer to the
PHI data as a message in the rest of the document.

The eight-tuple statement can be broken up into two parts: HIPAA-
Query which contains elements specified during the sharing process and
HIPAAResult which specifies who can legally access the shared message.
The HIPAAQuery is a 3-tuple consisting of (Sender, Owner, Purpose) while
the HIPAAResult consists of (Receiver, Belief, Consent).

3 Creating the Access Control Policy

JLog is a Prolog interpreter written in Java. The Jlog library provides an
embedded Prolog engine in Java. It enables us to consult prolog code, con-
struct queries and evaluate query results. It also provides the translation
between the Prolog terms and standard Java objects. We are using this
library to generate the access control policy. It can be downloaded from

2

http://www-cs-students.stanford.edu/~pflam/research/HIPAA_formalization.TB2009.pdf
http://code.google.com/p/hipaa/


http://jlogic.sourceforge.net/. We have combined all the HIPAA prolog files
into one file HIPAAPolicy.pl which is available in the ABEPolicyGeneration
project. This is because JLog (v1.3.6) could not process prolog code spread
across multiple files. We have also deleted the lines which resulted in an
output in the terminal.

For each value of HIPAAQuery, there is a set A of HIPAAResults such
that each combination of HIPAAQuery and a member of this set A is allowed
according to the HIPAA law. For each possible value of HIPAAQuery, we
repeatedly query the prolog code using JLog to obtain a valid HIPAARe-
sult until there are no more. We store this in a Java object of the format
HashMap < HIPAAQuery.toString(), Set < HIPAAResult >>. We are
using the String version of HIPAAQuery as it can be quickly used for com-
parison. The policy generation is done in the project ABEPolicyGeneration
in the class GenerateHIPAAPolicy.java. The resulting Java object is serial-
ized and stored in a file and is made available for access later. The Read-
HIPAApolicy.java class provides the sample code for unserializing the file
and thereafter querying the resulting Java object.

The person sharing the message specifies the values for the 3 elements of
HIPAAQuery. Using those values, we query the HashMap object to obtain
the set of legal HIPAAResults. The person accessing the message provides
the values for the elements in the HIPAAResult tuple. The individual can
access the message only if the tuple of 3 values provided matches one of
the elements in the set. This is the basic concept of the access control that
satisfies HIPAA law.

We are enforcing this access control using Attribute-based Encryption as
described in the next section. This allows us to encrypt a particular message
and publish it publicly. Only those who have the attributes that allow them
to legally access the message can decrypt it. This is one way of distributing
the access control.

4 Attribute-Based Encryption

The Functional Encryption library libfenc is a general purpose framework
for implementing functional encryption schemes. It is a generalization for a
wide range of encryption technologies including Attribute-Based Encryption
(ABE), Identity-Based Encryption and others. It is available here. This
needs to be setup for the website demo to successfully run.

3

http://jlogic.sourceforge.net/
http://code.google.com/p/libfenc/


5 Website

The website provides a demonstration of enforcing access control according
to the HIPAA law using Attribute-Based Encryption. The front-end has
Javascript code (messageDemoEncrypt.jsp) to acquire the values of the pa-
rameters and then transmit them to the server. It also displays the results
obtained from the server. At the back-end, the Java class ProcessInput.java
is a servlet that receives the values of the parameters and performs some
computation depending on the values received. The Functional Encryption
library has been developed in C. We have written the interface with this li-
brary to perform key-management, encryption and decryption in Java. These
processes require a lot of computational power. Consequently, they are all
executed at the back-end which is running an Apache Tomcat server.

We demonstrate the entire process from encryption to decryption on the
website. As mentioned before, the person sharing the message provides the
values for the parameters Sender, Owner and Purpose. The message is first
encrypted using symmetric DES encryption as that is quick. The key used in
the DES encryption is thereafter encrypted using the policy corresponding
to the values given.

5.1 Demo

The workflow of the demo is:

1. Documents are encrypted using DES encryption. We currently use
DES encryption purely for convenience reasons. The demo could easily
be modified to use AES or any other form of symmetric encryption.

2. We then encrypt the DES key of a document generated from the previ-
ous step using ABE. The attribute inputs and the boolean conditions
between them is provided by the prolog implementation.

3. Each user receives a key generated on the basis of his attributes which
allows him to access the documents that he is entitled to. This key is
generated with the help of the ABE master key. Thus if two of more
hospitals want to use ABE based encryption to exchange information
amongst themselves, they need to use the same ABE master key.

4. When the user wishes to access a particular document, we use his pri-
vate ABE key to decrypt the ABE encrypted DES key of the document.
If the decryption is successful, the decrypted DES is key is used to de-
crypt the man document. The information contained in the decrypted
document is then displayed to the user.

4



5.2 Code Design and Structure

Access Controller: This is the main class of the demo, which allows the
user to access the encrypted documents. This class assumes that an ABE
based private key exists for the user. Thus once we specify the key path and
the path of the encrypted document the object instance will try to decrypt
the concerned document.
ABEKeyGenerator: This class generates the ABE key for a user, based
on his attributes. The attributes of the user need to be specified in a list
format, using comma separated values. We use the Libfenc library for the
purpose of key generation.
ABE Encrypter: As the name suggests this class encrypts the DES key of
the document based on the attribute policy specified by HIPPAA. We get
these policies by running the prolog code and specifying the values of the
parameters: Sender, Owner and Purpose. We then receive a list of tuples of
allowable parameter values for the receiver, comment and belief parameters.
Each tuple of the list specifies not only the attribute values but the boolean
conditions between them. Because of the structure of the prolog code the
parameter values in a single tuple are anded while those across multiple tu-
ples are ored. The following example makes the above statement clear:
TODO GIVE EXAMPLE: The ABE encryptor object stores the encrypted
DES key at the provided path
DES Encrypter Decrypter This class uses DES encryption for encrypting
the main file which contains the actual medical records. The functionality of
this class is primarily hidden from the user of the system. The objective of
this class is to provide a level of indirection which makes the overall system
more efficient. The intuition behind this design is that, access control policy
for a document can change frequently. Thus, given the size of these files,
it would be inefficient to re-encrypt the entire document again and again
everytime the policy changes. By introducing DES encryption we only need
to re-encrypt the DES key which is of a very small size. Similar to the ABE
encryptor, this class allows you set the path where the encrypted DES file
should be stored. The Decrypter section of this class picks up the DES key
from the specified location and decrypts the corresponding document and
returns the decrypted information.
Utility Classes: The code also contains several utility classes which made
the entire framework of the demo more generic and flexible. These classes
include a Command Class for executing bash commands for ABE encryp-
tion/Decryption. We also have a HIPAAFormatter class which returns the
policy structure we use for encryption based on the tuple values obtained
from the prolog code. There are also various wrapper classes which further

5



simplify the implementation of the various features of the above mentioned
core classes.

Demo Specifics While coding up the ABE encryption module, we real-
ized that there is a character limit to the attribute policy (which is passed as
a parameter of data type String) we provide to the libfenc function. We found
that accommodating 8 tuples of the serializable object in a single encryption
is possible. Thus we generate multiple encrypted copies the DES key based
on subsequent sets of eight or less tuples. This variation is incorporated in
the ABE-Encrypter class which returns a count of the number of encrypted
versions that were created for a particular DES key. During the decryption
phase we need to specify the number of encrypted versions for the DES key.
The decrypted will then use the user’s private key to sequentially decrypt
the above encrypted versions. As soon as the ABE Decrypter is able to suc-
cessfully decrypt any one of the encrypted versions, it passes the Decrypted
DES key to the DESEncrypterdecrypter to decrypt the actual document.

6 Trouble Shooting

If you run into errors while importing a project (i.e.ABEPolicyGeneration),
it could be that the external JAR paths are not recognized. To solve this. In
the Package Explorer in Eclipse, right click on the Project (i.e. ABEPolicy-
Generation) and go to Properties. Go to Java Build Path, and then Libraries.
Remove all the .jar files and choose Add External JARs and add the .jar files
in the lib directory of your project (i.e. ABEPolicyGeneration/lib).

6


	Introduction
	Formalization of HIPAA Law in Prolog
	Creating the Access Control Policy
	Attribute-Based Encryption
	Website
	Demo
	Code Design and Structure


