Day 1: Cryptography \& Cryptocurrencies

Welcome!
Today:
(1) Course overview
(2) Logistics
(13) Lecture

- character representation
- rotation ciphers
- using Replit
(4) Problem work

15) Solution Presentations
(1) $\frac{\text { cryptography }}{r}$ hidden writtins

Alice

Bob

$$
\Gamma_{0}^{n!} b^{u}
$$

postal service
Inter net
might

- not deliver msg \rightarrow oh well
read may \qquad
- tamper with may
"confidentiality" i "privacy"
classic crypts:
- communicating wo trusting messene modem crypto: \downarrow this course
- finance wo trusting a bank
- voting who trusting the polls
- outsourcing who thotiys the cloud common idea:
"CO-operation without trust"
Schedule:
Part I: Cryptographs
- symmetric encrgotion
- hash functions
- groups e modular arithmetic
- Key exchange
- digital signatures

Part II: crypts currency

- UTXO model
- Proof-of -work
- a block-chain
- bonus lecture:
- elliptic carves or
- private crypto currencies OR
- multi-party computation.
(2) Logistics

Ethos: balance of lecture and probemtaned learning.
Every class:

- short lecture some problems rezuind
- problem work-some are bonus
- Replit
- groups! shored code
separate code.
- solution presentations
- "harknees style"

After class: finish required problems (and bonus problems)
Deere class: office hours.
\rightarrow have to attend with a friend.
\rightarrow schedule on Canvas

characters:
can be very complex!.

- accents Özdemir
- emoji: \ddot{V}
- layout control: "change to $R \rightarrow L$ layout" in this class well limit ourselves to ASCII characters
\rightarrow those on a us keyboard (mane or tess
\rightarrow ASCII also defines a 'code' (number) for each character between 0 and 255 \rightarrow see afciitable.com 1 bote-gbits.

$$
\text { contiguous }\left[\begin{array}{ccc}
a \mapsto 97 & A \mapsto 65 \\
6 \mapsto 98 & \\
\vdots & \\
2 \mapsto 122 & z \mapsto 90 \\
\{\mapsto 123 &
\end{array}\right]
$$

Writing numbers as bits（binary）
Normally we write \＃s in＂base 10＂

We can also write \＃s in＂base 2＂
${ }_{7}^{+} \int_{0}^{0} 1$ leading $1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=11$昜定＂eros＂eights＂＂four＂＂twos＂＂ones＂
in Python int（ 001111,2$)=15 \sim$ $f^{\prime \prime}\{15: 06 b\}^{\prime \prime}=={ }^{\prime} 001111 \cdot \checkmark$

Bb) Rotation cipher
idea: encrypt letters by "rotating" then:

msg:	a	b	c	d	e	\cdots	x	y	z
$c t:$	d	e	f	g	h	\cdots	a	b	c

乙 "ciphertext"
msg: bad
ct: $e \stackrel{\downarrow}{d} g$
Key : amount to rotate by: from 0 tows.
Welcome to Replit.

