
Days : Hash Functions

and MACS
↑

Message
Authentication

Codes

Today:
D. Hash Functions

☒ Padding
③ Daisy chain .

Interlude : Formal security
123 MACS

D. Hash Functions
.

"Definition " A secure hash function

f :X → Y
↑ ↑

function input ÑaF'output space
deterministic large) (smaller : -256 bits)
is afunction that

"

looks random".

Q: How do hash functions differ from
PRG, which also ' look random' ?

PRGS : small input 1-256b)
, big output (h bitt

Hashes : big input In bits) , small output (-2564
↑- they're opposites .

As
'random functions

'

,
hash functions have

many desirable properties :
→ Hard to find ×

,
≠ ×≥

St . 1-11×1=1-11×4

! Forgiven y ,

hand to find ☒s.t.tl/xl--y
"

Collision Resistant' "

Pre-image Resistant"↑

III.Q : How do we build good hash fns ?
I too hard for this class (dark magic
Today : How do we build a big
hash fh from a smell hash fn ?

big: input : n - bytes output : 32byte

⇒ : input : 64-bytes output : 32bytes

↳ÉhE "

daisy -chain hash
"

Laka
.

Merkle - Damgciral hash) .
Given a

"

compression
" hash

Cl × , y 5→ 2-
,

Define
←
32Éyt↳

H(d'T
n bytes

in two stages .

stage 1 : Padding
1. Add 0's to the end otd untill
its length 1in bytes) is divisible

by 32
.

examples zero byte

b' abt → b'ab ' +
'bti *30

b
'

a'☒32-3 b
'a' *32 C.no change!)

call the result

2. Add the length of d as a 32byte
block to the end ofd '

d
"
= d

'
+ bitstring -to-bytes (
f
' {ten(d) :0256b})

stage II : daisy-chain : d
"
in 32-byte

↓ blocks
EE☒
°?]¥Éf☒↓w . - Est

↳ output
↑

final output .
the " hash value

"

daisy- chain in pseudocode :

fn daisychain Cd
") :

ACC = 32 bytes . (
'b'1×001*32)

for 32-byte block bin d
"
:

ace = Compress lace , b)
output ace

.

Q : why do we add 0 -bytes during
padding?

→ so the data splits evenly into
32 -byte blocks .

Q: why do we add the length?
→ If we didn't , then

H (x 11 b) = Compress / Had , b)
"
structured relationship between

HUH b) and Had
→ A "random" hash should have

any structured
relationships !

④Interlude : Formal Security Definitions for Hash
Functions

Recall Collision Resistance (Informal) : " Hard to
find ✗ ≠ ×

' such that Had = Had "
.

Definition : A pair IX. ×
') is a collision for H

if ×#×
' and Hlx)=_H(xD

It's supposed to be
"hard

"
to find a collision

.

What does
"

hard
"

mean?

- It should take along time?
- the chance of doing it should be small?

Both!

Defn 1formal) : A hash function Ha is

collision - resistant it for all efficient

algorithms A ,

pr
-

✗≠×
' and 1-1×1×1=1-1×1×1

[when ix.×'t← A1)] is negligiblein A

Hd :
a hash function parameterized on the
output size: d. Idea: bigger d →
harder to find a collision

.

"

efficient algorithm
"
: a lpossibly randomized)

program whose runtime is ≤ some

polyno'mialp# e.g .
- Python functio
-Turing Machine.

"

negligible in d
"
: assymtotically smaller

than ¥ for all CE { 1,2, . . . }
that is

, fci) is negligible in d if

b- C £ {42,3
,
. . . }

,

tim f-(d)
d-so I = 0

.

example: ¥ is negligible ind .

③Message Authentication Codes :

Goal : Detect if the messenger modifies

a message.

the
"MAC

"

or
"

tag
"

AliceBobtE-AK.ms
cheek
f-= Mackin

Q : Is MACCK, m) = Hlm) asecure
MAC !

No! Messenger can trick Bob by
changing too !

m
'
≠ m

,
t
'
← Hlm ')

.

We have to ensure that the messenger

doesn't know how to change t . . .

Hash-MA + in Python
↓

MACCM
,
K) = H (Kum)

↑

ensures that messenger

can't evaluateMAC . .
.

Combining a cipher E- (Enc, Dec)
and a MAC :

Bob
Alice ←

use

d-← End 'm , Kj
two

b- ← MACCat
,
ki

keep

>

t-iMAC.cat, ki)

me- Deceit,
K)

- Gives " Authenticated Encryption
"

- This approach is called "

Encrypt then MAC
"

"ETM
"

For the problems : 32 bytes

cryptoy.compreisla.is)→É.

Problems:
• Implement padding
- Implement daisy chain hashing
• Implement hash- based MAC!

