Day 4: Modular Arithmetic and Cyclic Groups.

Today
II Remainders
(2) Modular Arithmetic
(3) Cyclic Groups
(1) Remainders.

Recall : Division is not always clean

$$
\begin{aligned}
& 8 / 2=4 V \\
& 7 / 2=3.5 x
\end{aligned}
$$

For unclean division, we say there is a remainder

$$
7 / 2 ? \rightarrow 7=3 \cdot 2+1
$$

quotient remainder

$$
15 / 4 \rightarrow 13=3.4+\frac{3}{\mathrm{rec}}
$$

definition: For integer n and positive integerd, if

$$
n=q \cdot d+r
$$

for integers q, r with $0 \leq r<d$, r is the remainder when d divides n.
alternate definition:
the remainder when d divides n is the least non-neyative r such that d cleanly divides $n-r$.
if r is the remained when d divides n, we also say

- r is " n reduced modulo d "

Q: What about negative n ?
> $\gg-1 \% 6$ A: They work too!

$$
\frac{5}{4}-3 \% 7
$$

2 Modular Arithmetic

- A new kind of arithmetic where you reduce all numbers moclulo some fixed integer p. \rightarrow For us, P will be pone, like $2,3,5,7$, or $2^{255}-19$
- Examples: (mod 5) It rally is pine! is
- $4+2=1$
$(4+2=6,6 \% 5=1)$
- $3+4=2$
$(3+4=7,7 \% 5=2)$
- $2 \times 4=3$
- $4 \times 4=1$
- $7-3=4$
- $2-4=3 \quad(2-4=-2,-2 \% 5=3)$

How does \div wonk?
We treat $3 / 2$ as $3 \times \sqrt{\frac{1}{2}}^{\kappa}$ what is this?
Key fact for all $n, \frac{1}{n} \cdot n=1(\bmod p)$)
How do we find y sit. $y=\frac{1}{n}$ or $y=n^{-1}$? Python can do it!
pow function: pow (base, exponent, modulus)
$\operatorname{pow}(n,-1, p)$ gives n^{-1} (a.k.a $\frac{1}{n}$)

$$
\begin{array}{ll}
2>\operatorname{pow}(2,-1,7) & 4 \cdot 2=8,8 \% 7=1 \mathrm{v} \\
4>) & \operatorname{pow}(3,-1,13) \\
99 & 3927,27 \% 13=1
\end{array}
$$

Recap: Modular arithmetic
$t,-x$: normal operation, followed by $\% p$.

$$
x / y:(x \cdot \operatorname{pow}(y,-1, p)) \% p
$$

"Theorem": arithmetic "works modulo primes:

- x, x are commutative $\&$ associative
- $1 / n$ always exists (when $n \neq 0$)
- $x+0=x \quad$ associative proponents
- $x \cdot 1=x \quad .$.
$2 a$ Groups.
A commutative group is:
- a set of objects, \mathbb{G}
- a way to multiply them
- a way to take inverses
-an identity $1 \in G$ st.
example: integer mod 7 lexcedto)

$$
\begin{aligned}
& \{1,2,3,4,5,6\} \\
& x-y=(x \times y) \% 7 \\
& x^{-1}=\operatorname{pow}(x,-1,7)
\end{aligned}
$$

for any $G \in G, 1 \cdot G=G$.
Fact: The integers modulo any prime P (if ne endure 0) are a commutative group. This group is written $\mathbb{Z}_{P_{n}}^{+}$multiplication
Q: Why nat θ ?
A: It has no inverse $0 \cdot$ any $x=0 \neq 1$
Definition: For $G \in G$ and positive integer $n \in \mathbb{N}$,

$$
G^{n}=\frac{G \times G \times \ldots \times G}{n \text { times }}
$$

ex: (mod 5)

$$
4^{4}=\begin{gathered}
4 \cdot 4 \cdot 4 \cdot 4=1 \\
10 V_{V 1}^{16} \\
256
\end{gathered}
$$

Definition: The order of a group is the sizes the et. The order of $G \in G$ is the least positive inheren st. $G^{n}=1$.

Example: order of 2 in \mathbb{Z}_{5}^{*}

$$
\begin{aligned}
& 2^{1}=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \rightarrow 3 \\
& 2^{(a)}=16 \rightarrow 1 \quad \checkmark \text { order is } 4 .
\end{aligned}
$$

Definition: a cyclic group is a group where all elements are powers of a generator $G \in G_{0}$
Example: $\mathbb{Z}_{S}^{x}=\{1,2,3,4\}$ are all gevenated by $\left.2: \begin{array}{l}2^{1}=2 \\ 2^{2}=4 \\ 2^{3}=3 \\ 2^{4}=1\end{array}\right\}$ all of He inters
So, \mathbb{K}_{5}^{+}is a cyclic group with generator 2 . Consider just $\{1,4\}$ from $\mathbb{Z}_{5}^{a}, 4$ generates this (sub) group: $y^{\prime}=4$

$$
4^{2}=1
$$

For public-key cryptograply we will use cyclic groups of prime order. The order will be HUGE: appoximately $2^{255}(256$ bits).

