Day 4: Modular Arithmetic and Cyclic Groups.

Today
Il Remainders
12 Modular Arithmetic
3 Cyclic Groups
D Remainders.
Recall: Division is not always clean
$8/2 = 4 \checkmark$ $7/2 = 3.5 \times$
For unclean division, we say there is a remainder
$\frac{7}{2}$? \rightarrow $7 = 3 \cdot 2 + 1$ quotient remainder $15/4 \rightarrow 13 = 3 \cdot 4 + 3$
remainder
definition: For integer n and positive integer d, if
$n = 2 \cdot d + r$
for integers q, r with osred, r is the remainder when d divides n.

alternate definition: the remainder when d divides n is the least non-negative r such that d cleanly
divides n-n.
if r is the remainder when d divides n, we also say: • r is "n reduced modulo d" • r is "n mod d" • r is "n % d" • r is "n
Q'What about negative n? >>> -1 % 6 A: They work too!
5 >>> -3 % 7 4
12 Modular Arithmetic
 A new kind of anithmetic where you reduce all numbers modulo some fixed integer p. → For us, p will be prime, like 2,3,5,7, or 2²⁵⁵-19
· Examples: (mod 5)
$\cdot 4+2 = 1$ (4+2=6, 6%5=1) $\cdot 3+4 = 2$ (3+4 = 7, 7%5=2)
• 2×4 = 3 • 4×4 = 1
$\cdot 7 - 3 = 4$ $\cdot 2 - 4 = 3 (2 - 4 = -2, -2\% 5 = 3)$

How does = work?
How does \div work? We treat $\frac{3}{2}$ as $3 \times \frac{1}{2}$ what is this?
Key fact: for all N, I n = 1 (mod p)
How do we find y s.t. $y = \frac{1}{n}$ or $y = n^{-1}$?
Python can do it!
pow function: pow (base, exponent, modulus)
$pow(n,-1,p)$ gives $n^{-1}(a.k.a.\frac{1}{n})$
>>> $Pow(2,-1,7)$ $u\cdot 2 = 8, 8\%7 = 1 v$
)) $\rho_{0}\omega(3, -1, 13)$ $3.9 = 27, 27.27.33 = 1$
Receip: Modular arithmetic
+, -, X: normal operation, followed by %p.
$X/y: (X \cdot pow(y, -1, p)) % P$
"Theorem" arithmetic "works module prines: +, × are commutative & associative
· 1/2 always exists (when n=0). • X+O = X · associative property ~
• $\chi \cdot 1 = \chi$ • • • •

[2a] Groups.	
A commutative group is: • a set of objects, G • a way to multiply them • a way to take inverses • an identity 16ft st. • for any Gi & G, 1•G=G.	example: integers mod 7 (except0) $\{1, 2, 3, 4, 5, 6\}$ $x \cdot y = (x \cdot y)\%7$ $x^{-1} = pow(x, -1, 7)$ I.
Definition: For Gi & Gi and positive in	$Z_{p}^{*} = multiplication$ $Z_{p}^{*} = multiplication$ $X = 0 \neq 1$
$G'' = G \times G \times \cdots \times G$ n times ex: (mod 5)	
$4^{4} = 4 \cdot 4 \cdot 4 \cdot 4 = 1$ $16 16$ 256	· · · · · · · · · · · · · · · · · · ·
Definition: The order of a group is The order of GGG is the n st. $G^n = 1$	

Example: order of 2 in \mathbb{Z}_5^* $2^{\prime} = 2$ $2^{2} = 4$ $2^{3} = 8 \rightarrow 3$ $2^{9} = 16 \rightarrow 1$ v order is 4. Definition: a cyclic group is a group where all elements are powers of a generator GGG, Example: $\mathbb{Z}_{5}^{\star} = \{1, 2, 3, 4\}$ ore all generated by 2: $2^{\prime}=2$ $2^{\prime}z_{2}$, all of the integers $2^{3}=3$, med 5, some 0. $2^{\prime\prime}=1$ So, This is a cyclic group with generator 2 Consider just £1,43 from Z5, 4 generates this (sub) group: 4'= 4 4²= 1 For public-teep cryptography we will use Cyclic groups of prime order. The order will be HUGRE appoximately 2255 (256 bits).