
Day 7 ! UTXOS

land payments via ledgers)

Today
① History of Money
③ Public Ledger

③ Goofy Coin

④ Transactions for SPCS -Coin

☒ A history of money
•Before computers :

• Money is a scarce object
- • naturally scarce : gold , seashells, . . .

• artificially scarce : government-issued notes
• Payments are physical transfers of the object
• Properties:

• Payments are irrevocable
• Scarcity is natural or from un forgeability
•

Very private
• After computers

• Money is data in a bank 's computer
• Redundantly stored
• Backed by

'

real
'

money
• Highly regulated

• Payments are data updates
• Properties

• Fast & convenient
• relies on integrity of banks (and laws)
• somewhat private : bank sees all

key Question : Does a financial system-

require trust?
→ trusting banks to follow rules

trusting regulators to enforce laws

trusting the Fed /

Theus treasury
to have

'

good
'

monetary policy

We'll see that the answer is -N0 !

② The Public Ledger
key tool : a distributed public ledger

iii.

:p
-2¥

j •

?
• Rules ↓ grows

• Anyone can post • Entries can't be removed (
"

append- only
")

• Everyone can see

• Everyone always sees the same ledger (consensus)
Example :

Initially : [
" A

"

]
After Alias posts

"

B
"

: [
"

A
"

,

"

B
"

]
After Bob posts

"

C
"

:[
"

A
"

,

"

B
"

,

"

C
"]

Today : How to build a financial system from ledger
Tommorow : How to build the ledger & secure it !

③ Goofy Coin
• Ledger has two kinds of entries:

←
Creates from nothing

•

"

createcoin ID NAME
"

: mints a coinID to NAME
•

"

Pay ID FROM TO
"

: gives a coin ID from FROM toTO
• Rules : in order to

"

Pag
"

, you must have the coin

Examples :
Create 0 A create 0A Create 0A

Pay 0 A B Create 113 Pay 0 A B

Pay 0 BC Pay 0 BCX Pay 0 A CX

✓ unauthorized double -spend
OR

not owned
Problems : Ideas :

• Anyone can spend anyone's money
! ! ← signatures

- Anyone can mint money ! ! ← ? ? (tomorrow]

• Cant make change ! ← merging /splitting
coins④ SPCS transactions :

• One type of ledge entry : a transaction (tx)
• Atx has lists of inputs and outputs
• An output creates a coin and has

• id : a uniqueme for this coin
• pk : public key of who owns it

• amt : how much it is worth
• An input speeds a coin an has

• id : which coin is spent
• s.io#asignatuM-nidbysKforpk.

• Validation
•Transactions are validated from first to last

• As txs are validated
,
we maintain. a set

of unspent tx outputs (UTXOS)
.

•Tx rules tin python: { id : output}
• All input ids must be in UTXO set
• All output ids must not be in UTXO set

• All input signatures must be valid
• Sum of input amounts must ≥ sum of

of output amounts .

• Q : how to get input amounts : from UTXO set !

Examples :

Start with { 0 : Out lid -0 ,ph=A ,
aunt:3)}

Tx ([In (id-0, sig = :-)) ,[Out/ id-1.pk-B.am1-
=D

,

Out / id--2, pk-A.am/-=H])

☆ Valid .

If He 2nd output has amount 2? ×

If the 1st output has amount 1? to

If the signature is invalid ? ×

If the 2ⁿᵈ output has id = 0 ? ×

If the 1ˢᵗ output has pk=A ? ✓

Small Example :

Alice has coins
'

id :am+:t¥¥¥H
Alice wants to build a to pay

Bob $7 .

-

One
way

to do this : Use $17 coin
, get $10 in

change :

f%↳ d¥T
,pk-upkisob.amt-tid-7.ph-pk-Niu.am/---10

- How many ways can Alice get $0 in

change ? Two $7 or $3 + $4

- What if Alice wants $2 in charge? $4 -45

- Many ways
to build txs . . .

• Revisiting Problems :
• Anyone can spend anyone's money
→ Signatures prevent this !

- Anyone can mint money
→ Unclear : we haven't discussed how $

is created
• Cant make change
→ Multiple inputs & outputs !

Problems : Implementing Tx validation !

