
Day 8 : Proof -of -Work

(building a secure ledger)

today
I Recap
2 Blocks

3 Proof-of - Work (Pow)
④ Hash Chains / Blockchain

Recap :
• Last time

,

Public Ledger→ Payment system
• Unresolved questions :

• How is money created ?

• How is scarcity enforced ?
• How do we ensure consensus?

⇒
related

• How do we ensure the append -only property ?
• How do we incentivize people to maintain / store

the Ledger ? It make something in someone's interest

• Key ideas : a hash -chain & proof -of -work .

② Blocks

•The ledger is organized into tx
groups called

"

blocks
"

.

txo
,
tx

, ,
txz j tx } ,

txy
,
txsj • • .

Block 1- Block 2
← together /

• Blocks
'

are added to the ledger atomically .
all -at-once

• A system may specify a range of acceptable block sizes .

3
.

Proof - of - work

• An idea used to :
• Create money while .

• Preserving scarcity , and
• Incentivizing storage / maintenance of ledger.

• We'll :
• Reward anyone who adds a block

,

but
• make blocks hard to add (using crypto).

• A block
• Is added to the ledger by a

"miner "

• Contains :
• the miner's public key •hashofprev.io#
•

a new coin Id for the miner's rewardblok(more
•

a list of transactions this later)

•

a
"

grind
"

: a sequence of bytes that the miner sets arbitrarily
(more on this later•In addition to the Utxos of its txs

• A block creates a new UTXO for the
miner :

• id = miner's reward id
For example : "1

"

.

• pk = miner's pk ←
•

am 1- = REWARD
- AMT + % transaction surpluses

• So
, adding to the ledger gives $.

◦ How do we preserve scarcity
• By making blocks hard to add

• By adding extra constraints

← integer
• Requirement : first d bits of H(block .to-bytes4)
must be 0.

• Meet this requirement by trying differentgrinds
• H (BlockC-

,
-

g- .
. . _

, grind D. to_bytes4) = ??
•

"

grind -y try random
°

"

grind
=zf values until /

requirement is net .

Q: If His like a random fn
,

what is the prob.
that the last d bits are zero?

A : Pr [one bit is 03=1-2
,
so ¥01

.

-Thus
,
the expected # of guessed grind values

is 2%"
"

difficulty
"

parameter : higher → harder
to add
blocks

.

•The idea to require the last d bits of Hcdata
to be zero is called

"

proof of work
"

.

•Invented by ¥EDwode and Monitor
in
'

93 also
"

differential privacy
" TRSA '

22 Math award

• Invented for stopping email spam :
•To email someone who doesn't know you,
you must provide proof-of -work .

AliceB- Boy
←
has Alice is
contacts

doesn't have
%

, Charlie
" Alice in contacts

• For us : • moderates block production rate.
• randomizes block production authority .
• distributes block production authority
proportionally to computational resources.

• Moderating block production rate:
• d is raised / lowered to pace out block every

10 minutes
.

• Distributing block production authority :

• Construct a proof -of -work→ authority to add a block

• Chance of solving PoW ~ #of computes
Alice Bob_

←
4× more

¥1 ⇔#
⇔# likely

¥1 ¥1 to solve

• So as long as honest people have > 50% of
-

computers , the system behaves as intended

•

"

51% Attack
"
: An adversary w/ > 50% of

computers can do many bad things including :

• Refuse the transactions of people they don't like
.

④ Hash - Chain (" Block Chain
")

• Remaining problem : how do we agree upon

the orders of previous blocks ?

• Connect all previous blocks to proof -of-work.
• Set

"

previous hash
" field of each block

to the hash of last block
.

last block
,
this

☒K
"

A
"

blockchain
"

☐
←•

☐
"

☐
"

☐

• Benefits of hash-chaining :
• Establishes a clear order of blocks / transactions
• Ties the Pow to the order

•
new order → new PoW

• Important , because reordering txs could be an attack

Example 15100k¥ Buy 2 shares of JPM for Alice ← $Ñʰe¥pµof¥→
15PM@ 522¥ Buy 2 shares of JPM for ☐0b$

$110 ± JPM@53
switching them gives Alice

'

1-JPM@ 57

a worse price !

