Day 9: Elliptic Curves + Crypto on your Computer

"Let G generate a group Gr of prime order"
What is a group?
· set objects · a way to multiply
· identity: 1 Jepecial object generator: G Jepecial
• associative $(X,Y) = X (X-Z)$, commutative $X = Y \cdot X$
Detour: Hobbies in antiquity -> finding points on curves OR stolling equations Puthacomes: finding a back N s.t
$a^{2} + b^{2} - c^{2} + (3 + 5) + (5, 12, 13)$
Fermat: find X, y, z GZ s.t. X ³ +y ³ = z ³ Fermat's bust theorem: no such X, Y, Z K order 2 in y
Diophantus: Anding X, y GQ s.t. $y = x^3 - x + 9$
 Diophantus wrote many books about solving equs like this Fermat read one That is where he wrote his last theorem 1990s Ander Willis provis the thm using elliptic
Musical: Fermat's Lost Tango

What does an elliptic curve look like? What does Diaphantus' curve look like
$(-1/3)$ $(1/3)$ $(1/3)$ $(1/3)$ $y^2 = \chi^3 + A\chi + B$
Finel some rational points (-1, 3) $(0, 3)$ Finel some rational points (-1, 3) $(0, 3)$
$\chi = 0, y = 3 \rightarrow \text{ on curve}$ $\chi = 2$
$\begin{array}{c} x=3 y=2,-3+9 > 0 \\ y=2 y=$
$y = \pm \sqrt{15}$ $x = -3$ 5 (0) How to find move outcomes on the set
\rightarrow "flip": If (x, y) is on-curve, $(x, -y)$ is too.
→ "chord method": Pick two pts, drow a live, find the third intersection.
-> Rational, b/c eqn is cubic in x -> since involtional rts come in pairs -be Visi-viac 2 retieved roots
> "tangent nathod": Pick one pt, drow tangent, flud other interaction.

Q: Chord (P,Q) = RJ is this commutative? Chard (P,Q) = Chard (Q,P) C is this associative: Chord (P, chord (Q, R)) & chord (Ghad (P, a), Flip (Chord (P, Q)) is associative R) Okay, so, can "chord - then flip" makes agroup? > to combine a pt with itself? -> "tongent then flip"
> need an identity.
> add "pt at infinity"
> definited to be the identity P Pop = O 1/2 $P \otimes O = P$ -> "flip" ' invese We call this group $E(\mathbb{Q})$ T pts on cure + pt infinity, w/ coordinates + pt infinity, in Q ·generator? · bigger problem rationals can get very big Idea: use modular arithmetic: anithmetic iseted of rational e points nyt Zp s.t x2= x3-x+9 (modp) $E(\mathbb{Z}_p)$ t pt at infinity.

Le can also find a severator a prime-order subgroup. G, that produces group abstraction E(Zp) pts on the curve + pt at infinity G a particular pt on the cure G pt at infinity $H \rightarrow H$ flipping & coordinate $H_1 \cdot H_2 \rightarrow H_3$ Chord - then - flip tangent - then -flip H, H, H, H2 repeated group operations Hn NIST curve P256 (aka seep 256 r 1) $E(\mathbb{Z}_{p})$ with $p = 2^{256} - 2^{214} + 2^{192} + 2^{96} + 1$ equ: X³-3x tb (b is constant) p is specially designed to note arithmetic mod p tast. b was chosen by hashing a seed secq256r1, curve 25519 × p= 2255-19 Ofles

Website. crypto tool.py -> Download to Desktop Python cryptotool.py keygen - k mykey -) generate a random symmetric key & save it to "my key" python cryptotool.py enc -k mykey -m nots.pdf -c myct