Day 9: Elliptic Curves

+ Crupto on your Computer
"Let G geunite a group \mathbb{G} of prime order"
what is a group?
- set objects
- a way to multiply
- identity: 1 special objet
- associative $(x \cdot y) 2=x \cdot(x-z)$, commutative $x \cdot y=y \cdot x$

Detour: Hobbies in antiquity \rightarrow finding points on curves $O R$ solving equations
Pythagoras: finding $a, b, c \in \mathbb{N}$ s.t

$$
a^{2}+b^{2}=c^{2} \quad(3,4,5),(5,12,13)
$$

Fermat: find $x, y, z \in \mathbb{Z}$ s.t. $x^{3}+y^{3}=z^{3}$
Fermat's lat theorem: no such $x, y, z \psi^{2}$ order 2 in y
Diophantus: finding $x, y \in \mathbb{Q}$ s.t. $y^{(2)}=x^{(3)}-x+9$
\rightarrow Diophantus wrote many books about solving egns like this
\rightarrow Fermat read one
\rightarrow That is where le wrote his last fleorem
\rightarrow 1990s, Ander Wiles prows the the ... using elliptic Musical: Fermat's Last Tango

What does an elliptic curve look ike? What does Diophantus' curve bole like

$$
y^{2}=x^{3}+A x+B
$$

Find sone rational points on $\quad y^{2}=x^{3}-x+9$
$x=0, y=3 \rightarrow$ on curve

$$
\begin{align*}
& x=2 \\
& y^{2}=x^{3}-x+4 \\
& y^{2}=8-2+y \\
& y^{2}=15 \\
& y= \pm \sqrt{15}
\end{align*}
$$

$$
\begin{aligned}
& 0=x^{3}-x+9 \\
& x=3 \quad 3^{2}=0^{2}-0+4 \\
& x=2 \Rightarrow 8-3+9>0 \\
& x=-2 \Leftrightarrow-8+2+4>0 \\
& x=-3>8
\end{aligned}><0
$$

How to find move rational points?
\rightarrow "flip": If (x, y) is on-curve, $(x,-y)$ is too
\rightarrow "chord method": Pick two pts, draw a live find He third intersection.
\rightarrow Rational, b/c eqn is cubic in $x \rightarrow$ since irrational rots comein pair y $\frac{-b E \sqrt{b^{2}-4 a c}}{2 a}, 2$ rational roots \rightarrow third pt is rational too
\rightarrow "tangent method": Rick one pt, draw tangent, find otter intersection.
$Q: \quad \operatorname{Chord}(P, Q)=R$
τ is this commuktive? $\quad \operatorname{Chard}(P, Q) \stackrel{?}{=} \operatorname{Chord}(Q, P)$
T is this associative: $\operatorname{Chord}(P, \operatorname{chord}(Q, R))=$ chord (Chard (P,Q), Flip $(\operatorname{Chord}(P, Q))$ is associative $R)$
Okay, so, can "chon d-then flip" make agroup?
\rightarrow to combine a pt with itself? \rightarrow "tangent then-filp"
\rightarrow need an identity.
\rightarrow add "pt at infinity": O^{\prime} defined to be He identity

$$
\begin{aligned}
& P \otimes \frac{1}{P}=\theta \\
& P \otimes \theta=P
\end{aligned}
$$

\rightarrow "flip": inverse

We call this group $E(\mathbb{Q})$ - generator?

- bigger problem: rationals

$$
\begin{aligned}
& \text { 个 pts on cure } \\
& \text { w/ coordinates }+ \text { infinity. } \\
& \text { in } \mathbb{Q}
\end{aligned}
$$

can get very big.
Idea: use modular arithmetic instead of rational arithmetic:

$$
E\left(\mathbb{Z}_{p}\right)^{<} \text {points } x_{i} y \in \mathbb{Z}_{p} \text { s.t }
$$

+ pt at infinity.
we can also find a severator G, that produces a prime-order sub group.

group aboticaciac	$E\left(\mathbb{Z}_{p}\right)$
C_{3}	pts on tecurve + pt at infinity
G	a particubir pt on the cure
1	pt at infinity
$H \rightarrow 1 / H$	flipping y coordinate
$H_{1} \cdot H_{2} \rightarrow H_{3}$	chord-then-flip
$H_{1}-H_{1} \rightarrow H_{2}$	tangent-then-flip
H^{n}	repeated group operations

NIST curve P256 (aka seep $256 r$ 1)
$E\left(\mathbb{K}_{\rho}\right)$, with $p=2^{256}-2^{224}+2^{192}+2^{96}+1$ equ: $\quad x^{3}-3 x+b \quad(b$ is constant $)$
p is specially designed to wo the arithmetic $\bmod P$ fat.
b was chosen by hashing a seed Offer: $\sec q 256 r 1$, curve $25519 \kappa \quad p=2^{255}-19$

Website:
cryptotool.py \rightarrow Downlcad to Desktop
python cryptotool.py keygen $-k$ mykey
\rightarrow geverate a random symnetric key \& save it to "my key"
python cryptotool py enc te mykey - m nots. plt -c myct

