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Abstract

We describe remote side-channel attacks on private (a.k.a. shielded) transactions in Zcash.
Our attacks exploit a lack of isolation between the Zcash client’s peer-to-peer and wallet
functionalities, and weaken or break the anonymity of shielded transactions.

We describe two active attacks—REJECT and PING—on the implementation of in-band
secret distribution in the main Zcash client. At a high-level, both attacks exploit differences
in the way that a client processes transactions, depending on whether the client is the trans-
action’s payee or not. The REJECT attack sends out specially malformed transactions that
are accepted by all nodes except by the payee who responds with an explicit “reject” mes-
sage. The PING attack relays a transaction to a node, immediately follows it with a “ping”
message, and infers whether the node is the transaction’s payee based on the timing of the
ping’s response.

These two types of attacks could enable an active remote attacker to:

1. Determine the identity of the payee for a shielded transaction being sent into the network.

2. Locate the Zcash node that holds the private incoming viewing key (ivk) that corresponds
to an attacker-known shielded payment address (“zaddr”).

3. Break Zcash’s unlinkability of diversified payment addresses, by determining whether
two attacker-known payment addresses correspond to a same private viewing key.

4. Corrupt and crash a Zcash node that holds the private ivk corresponding to an attacker-
known shielded payment address.

5. Set up a remote timing side-channel on an ECDH key exchange between a victim node’s
private ivk and an ephemeral public key. In principle, this side-channel can be used to
fully recover the victim’s ivk, although the attack is probably impractical.

The vulnerabilities underlying these attacks affected Zcash’s Sapling imple-
mentation, from the initial Sapling release (v2.0.0) until release v2.0.7-2. We
have disclosed these attacks to Zcash’s security team, who fixed them in the lat-
est v2.0.7-3 release [I]. The Zcash team’s security announcement can be found
here [2]. Users who have updated to the latest release are no longer vulnerable
to these attacks.

*Work performed while the first author was visiting ETH Ziirich



1 FAQ

Who was affected? The PING attack could have affected any user of the official Zcash client
(or of a Sapling-enabled Zcash fork) who has received shielded funds in a Sapling transaction.
The REJECT attack could have affected any user of the official Zcash client (or of a Sapling-
enabled Zcash fork) who has generated a Sapling shielded payment address (“zaddr”) and shared
this address with one or more third parties (e.g., if you have given your zaddr to an exchange,
posted it online somewhere, or otherwise shared it so that someone could send you shielded funds).
Users who upgraded to the v.2.0.7-3 Zcash release [I] are no longer affected by these attacks.
Sprout transactions were not affected by the REJECT attack and were likely not remotely
exploitable by the PING attackﬂ
The attacks require an adversary to actively monitor the network’s peer-to-peer traffic and
inject its own messages. Thus, the attacks cannot be applied retroactively.

What should I do? If you use Zcash, update your client to the latest v.2.0.7-3 release [I 2].
If you use a project that forked Zcash and that supports Sapling transactions, ensure that the
vulnerabilities underlying these attacks have been fixed and upgrade your software.

Were my funds at risk? No! The attacks cannot be used to steal or counterfeit coins.

Was my privacy at risk? Yes! The attacks could have been exploited by an active adversary

to tell whether you have received a shielded transaction, recover the IP address of your Zcash

node, link together your diversified payment addresses, and (in principle) even to fully recover

your incoming viewing key (an attacker in possession of your viewing key cannot steal your coins).
The attacks do not allow an attacker to decrypt memos or shielded amounts.

Have these attacks occurred? We do not know. The REJECT attack is targeted at a specific
user, so the blockchain will show no evidence whether this attack has been mounted or not. To
find out if you have been targeted by a REJECT attack, you have to check your Zcash client’s
logs to find evidence of “reject” messages being sent as a result of a malformed Note plaintext.

A user who has been subjected to the denial-of-service attack described in Section (4.3.4] would
likely have noticed that their node crashed and that it could not be restarted.

The PING attack only sends valid messages to Zcash peers and thus leaves no suspicious trace.
As the Zcash client logs only contain coarse timing information (each log-entry displays the date-
time up to seconds), identifying an attack in the logs is probably not reliably possible.

What is the difference between REJECT and PING? Both attacks let an attacker tell
whether a remote Zcash client was the payee of a particular shielded transaction.

REJECT only applies to shielded transactions specially (mal-)crafted by the attacker, while
PING applies to any shielded transaction, even those sent by honest users.

The attacks differ in the side-channel that they exploit. REJECT causes the payee of a
transaction to relay an explicit error message to the attacker, while PING exploits a timing side-
channel wherein the payee of a transaction takes a larger amount of time to respond to a ping.

REJECT always succeeds, while the success rate of PING depends on the network jitter be-
tween the attacker and victim (the measurable timing difference is about 1 millisecond).

Was I safe if I used Tor? No. While Tor or other network anonymity tools can mitigate
the threat of the IP-recovery attack described in Section they offer no protection against
linkability of diversified addresses (Section or denial-of-service (Section [4.3.4)).

Moreover, while the use of Tor might increase network jitter, it does not remove the timing
side-channels which can be used to determine the payee of a shielded transaction (Section
or to recover an incoming viewing key (Section .

1The principle behind the PING attack technically also applies to Sprout, but the resulting timing side-channel
is unlikely to be remotely exploitable.



2 Timeline

08.26.19 Our team discovered The REJECT attack.

09.15.19 We disclosed the REJECT attack to Zcash’s security team (by encrypted email).
09.13.19 The Zcash security team discovered the PING attack.

09.15.19 Our team independently discovered the PING attack.

09.20.19 We disclosed the PING attack to Zcash’s security team (by encrypted email).

09.24.19 The Zcash team released a fix for both attacks in version 2.0.7-3, along with a
security announcement [2 [].

09.28.19 Jonathan Leto reverse-engineered the bug underlying the REJECT attack from
Zcash’s fix, and described the resulting “IP address recovery” attack—one of the
four variants of the REJECT attack that we discovered. Leto created CVE-2019-
16930 to track the bug and the IP address recovery attack [3].

3 In-band Secret Distribution in Sapling

Notation and Preliminaries. Let ¢ be the modulus of the pairing-friendly BLS12-381 curve.
Let J be the group of points on Jubjub, Zcash’s elliptic curve over F, of order 8 - r, with r prime.
Let J(") denote the prime-order subgroup of J of order 7, and let J(* be the set of points of order
r (ie., J\ {0}).

For clarity, and departing from the convention in the Zcash specification [4], we use lowercase
symbols to denote scalars (e.g., ivk), and uppercase symbols to denote curve points (e.g., PKy).

Zcash’s diversified payment addresses are standard static Diffie-Hellman public keys. The long-
term private key is called an incoming viewing key (ivk) and the public key, given by (Gq, PKy), is
called a diversified payment address. They are computed as

GenlIVK() GenDiversified (ivk)
ivk <~ {0,...,22%2 — 1} Gy = J)*
return ivk PKg < ivk - Gq

return (Gy, PKy)

In-band Encryption. To send some value v to a shielded payment address (Gq4, PKy4), a sender
creates a new transaction with an Output description that contains, among other information, a
Note commitment: cm = Commit(Gq||PKq4||v; rem). In order to spend her coins, the receiver needs
to prove that she knows an opening of the Note commitment cm.

Zcash’s in-band secret distribution protocol enables the sender to securely transmit an opening
of the Note commitment to the receiver as part of the transaction. For this, the sender performs a
semi-static Diffie-Hellman key exchange involving the receiver’s public parameters (Gq, PK4) and
a fresh ephemeral secret esk:

KeyAgree(Gq, PKy)

esk < F*

EPK < esk - Gy4

SS + 8- esk - PKy
k + KDF(SS, EPK)
return (k, EPK)

2Technically, Gy is computed using a standard “hash-and-check” approach that iteratively samples a random
diversifier d < {0,...,2%8 — 1}, hashes d, and checks whether the result is a valid z-coordinate of a point in J(")*.



The opening of the commitment cm is included in the Note plaintext (np). The sender encrypts
np under k using a standard symmetric AEAD scheme, and appends the resulting ciphertext C' as
well as the ephemeral public key EPK to the transaction.

Blockchain Scanning. To recover coins sent to her, a Zcash user scans each transaction in
the blockchain using her incoming viewing key ivk. Given a transaction containing an ephemeral
public key EPK, a Note ciphertext C' and a Note commitment cm, she computes:

TrialDecrypt(ivk, EPK, C, cm)
1: SS « 8-ivk- EPK
2: k + KDF(SS, EPK)
3: np = Decrypt, (C)

e

if np= 1, return |

Parse np as np := (Gq, v, rcm, memo)

PKy « ivk - Gq

if cm # Commit(Gq||PKg||v; rem), return L

return np

Unlinkable Diversified Addresses. The Zcash protocol enables a user to generate multiple
diversified payment addresses linked to the same private incoming viewing key. That is, a user
can generate multiple pairs (Gd(i), PKd(i)) satisfying the discrete-log relation PKy® = ivk - Gg¥.
This enables a user to hand out a different public key to each entity that it wants to receive funds
from, without requiring the creation of new accounts.

The unlinkability requirement for diversified addresses says, informally, that it should be hard
to tell whether two different diversified payment addresses belong to the same user. The formal
security requirement is defined by a game with a computationally bounded adversary A:

Unlinkability 4

b+ {0,1}

ivkg <— GenIVK(), ivk; <= GenIVK()

(Ga?, PK4(?) « GenDiversified(ivko), (Gg*), PK¢g™M)) <= GenDiversified(ivk;)
(Gd(z), PKd(Q)) + GenDiversified(ivky)

b o A(Gd(o), PKd(O), Gd(l)7 PKd(l), Gd(2)7 pKd(Q))

return b = b

The unlinkability of diversified addresses holds under the DDH assumption in J(* [4].

4 The Attacks

At a high level, the goal of both the REJECT and PING attacks is for an adversary to tell
whether a remote Zcash client succeeded in decrypting the Note ciphertext C' of a particular
shielded transaction. As the decryption only succeeds if the remote Node was the payee of the
transaction, this information leaks to the attacker.

The two attacks differ in their setup (REJECT only applies to shielded transactions specially
crafted by the attacker, while PING applies to any shielded transaction), and in the side-channel
that they exploit (an explicit error message for REJECT, and a timing side-channel for PING).

Any references to source code files are from release v2.0.7 of the Zcash client which was still
vulnerable to our attacks. The latest release v2.0.7-3 includes fixes for all the attacks that we
report here.



4.1 The REJECT Attack

Upon seeing a new shielded transaction, the Zcash client attempts to decrypt the associated Note
ciphertext C. If the decryption succeeds (i.e, this client is the transaction’s recipient), the client
then attempts to parse the Note plaintext np (line in TrialDecrypt). A valid plaintext is a 564-bit
string, where the first byte indicates the encoding version (0x00 for Sprout and 0x01 for Sapling).

If the leading version byte takes on an incorrect value (e.g., other than 0x01 for a Sapling
transaction), the plaintext serialization (defined in Note .hp}E[) throws a std: :ios_base::failure
exception with error message “lead byte of SaplingNotePlaintext is not recognized”.

The use of this exception-type for errors in message encoding is inherited from the Bitcoin
client that Zcash is built upon. The exception is propagated all the way to the ProcessMessages
method in main.cpp, where it is caught and causes a “reject” message to be sent back to the
sender of the transaction

This provides the sender with an oracle indicating the successful decryption of a Note ciphertext
with a specifically malformed plaintext (e.g., with a version byte of 0x02).

We note that Zcash has an in-built anti-DoS mechanism, inherited from Bitcoin, wherein peers
that send malformed transactions get assigned penalty scores and are ultimately dropped from the
P2P network. Surprisingly, encoding errors such as this one (or others, such as supplying incorrect
transaction flags) do not seem to trigger this anti-DoS mechanism.

The vulnerability does not seem to affect Zcash’s implementation of the original Sprout version.
While the serialization of Sprout Note plaintexts also throws an exception if the lead version byte
is incorrectﬂ this exception is correctly caught during blockchain scanningﬁ

4.2 The PING Attack

After a Zcash client successfully decrypts a Note ciphertext and parses the Note plaintext, it checks
that it has received a valid opening of the Note commitment cm (lines |§Hz| in TrialDecrypt).

This involves the computation of a Pedersen hash function (see [4] for details) and two mul-
tiplications of a Jubjub point by a random 256-bit scalar. As these are costly cryptographic
operations, a call to TrialDecrypt where the decryption of the Note ciphertext succeeds will take
significantly longer than a call where the decryption fails (the time difference is on the order of a
millisecond on a standard desktop machine).

A remote attacker can create a timing side-channel on the duration of the TrialDecrypt call
by relaying a shielded transaction immediately followed by a “ping” message to a Zcash node.
Zcash’s peer-to-peer interface processes incoming messages in a serial fashion. It will thus first
process the transaction, including the TrialDecrypt call, and then respond to the “ping” message.
The time elapsed before the receipt of the “ping” response leaks information about the success of
the Note decryption, and therefore on whether the node was the payee of the relayed transaction.

The attack applies even for transactions sent by honest users. The attacker would relay the
transaction to other nodes and then send a “ping” to each recipient.

In principle, a similar timing side-channel exists in Zcash’s older Sprout protocol. However,
Note commitments in Sprout were hash-based and require a single SHA-256 computation [4].
Thus, the timing difference between a successful or unsuccessful call to TrialDecrypt is very low
(sub-microsecond) and unlikely to be reliably measurable remotely.

4.3 Attack Consequences
4.3.1 Determining if a Node is the Payee of any Shielded Transaction

This attack on transaction anonymity applies to arbitrary shielded transactions. It is a straight-
forward consequence of the PING attack.

Shttps://github.com/zcash/zcash/blob/0512e9e/src/zcash/Note . hpp#L157
4https://github.com/zcash/zcash/blob/0512e9e/src/main. cpp#L6366
Shttps://github.com/zcash/zcash/blob/0512e9e/src/zcash/Note . hpp#L98
Shttps://github.com/zcash/zcash/blob/0512e9e/src/wallet/wallet . cpp#L1806


https://github.com/zcash/zcash/blob/0512e9e/src/zcash/Note.hpp#L157
https://github.com/zcash/zcash/blob/0512e9e/src/main.cpp#L6366
https://github.com/zcash/zcash/blob/0512e9e/src/zcash/Note.hpp#L98
https://github.com/zcash/zcash/blob/0512e9e/src/wallet/wallet.cpp#L1806

First, the attacker builds a timing baseline by running the ping attack multiple times against
a target node, using shielded transactions that are explicitly not addressed to that node (e.g., the
attacker can send shielded values intended to itself). The timing of the ping responses tells the
attacker how long an unsuccessful TrialDecrypt call takes for that node.

Then, upon seeing a new shielded transaction, the attacker relays the transaction and a ping
to the victim node. The attacker records the time elapsed before receiving the ping response, and
checks whether there is a large difference from the previously measured baseline response time. If
the response time is longer than expected, the node was probably the transaction’s recipient.

The attacker can of course build baselines and relay transactions to multiple (or all) nodes in
the network, thereby guessing the payee of all shielded transactions.

On a standard desktop machine, the timing difference between a successful and unsuccessful
TrialDecrypt call is about 1 millisecond—a significant delay even over a noisy network connection.
We built a proof-of-concept of this attack in a LAN, where the attacker can determine whether
a node received a transaction with 100% precision (see Section . More generally, the success of
the attack depends on the network jitter between the attacker and victim nodes.

4.3.2 Linking a Payment Address to a Zcash Node (“IP address Recovery”)

Given a shielded payment address (Gg,PKq), the REJECT and PING attacks can be used to
determine which Zcash client this address belongs to. We describe the simpler REJECT variant.

The attacker builds a Note plaintext with an incorrect leading byte, encrypts it under k =
KeyAgree(Gq, PKy), and sends a transaction containing the Note ciphertext to all nodes in the
P2P network to check which node responds with a “reject” message.

Unless the victim has taken measures to conceal the IP address of its Zcash node (e.g., by
connecting via Tor [5]), either attack variant can link a payment address to a specific IP address.

One could argue that an attacker in possession of a victim’s payment address could already
have determined the victim’s IP address when it originally received the payment address. But this
need not always be the case. For example:

e The victim may have used an anonymization system like Tor when sharing its payment
address with the attacker, but may not be hiding the IP address of the Zcash node that
contains its private key.

e An attacker could obtain payment addresses through other means, e.g., by hacking a Zcash-
supporting service that the victim was using.

4.3.3 Linking of Diversified Keys

Given two payment addresses (G4,PKy), (G4',PKy'), an attacker can determine whether they
belong to the same user, thus breaking the strong unlikability guarantee for Zcash’s diversified
payment addresses[]

The attack simply consists in running the above “node identification” attack twice, with two
transactions containing a Note plaintext encrypted for both payment addresses. The two payment
addresses are derived from the same ivk if and only if the same node rejects both transactions.

This assumes that the victim’s Zcash node contains a single incoming viewing key. If a user has
generated multiple distinct Zcash accounts, the attack determines whether two payment addresses
correspond to incoming viewing keys loaded in the same Zcash wallet (and thus belonging to the
same user).

Note that this attack works even if the victim’s Zcash client makes use of Tor or similar
anonymization tools. The attacker simply sends the two transactions over the same Tor connection,
while being oblivious to the actual IP address of the destination.

"The attack does not formally break the unlinkability security notion captured by the Unlinkability game, as the
game does not provide the adversary A with a decryption-success oracle for malformed plaintexts.
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4.3.4 Disconnecting a Zcash Node

This is a curious additional consequence of the REJECT attack. Once a transaction containing
a malformed Note plaintext is included in a mined block, the client with the corresponding ivk
crashes when attempting to validate the block. The node logs the following errorﬂ

zcashd: main.cpp:5042: void CheckBlockIndex(const Consensus::Params&) :
Assertion ‘setBlockIndexCandidates.count(pindex) == 0’ failed

This failure is pernicious. Even if the Zcash client is manually restarted, it re-crashes immedi-
ately with the same failed assertion when re-attempting to validate the block.

If an attacker were to get hold of shielded payment addresses for a large number of Zcash users,
this failure could lead to a strong DoS attack on the network. Worse, if many Zcash miners had
associated shielded payment addresses, such a DoS attack could be exploited to stifle the network’s
overall mining power (e.g., in preparation for a 51% attack or to remove mining competition).

One way to simultaneously affect all users with a shielded address would be to send a malformed
ciphertext encrypted under the key k& = KDF(O, O) by setting EPK = O. However, this attack
fails because the transaction validation routine—which occurs before the trial decryption—checks
that EPK is not a low order curve point.

4.3.5 A Remote Timing Side-Channel on ECDH

Finally, both the REJECT and PING attacks can—in principle—be used to launch a remote
timing attack on Zcash’s implementation of the ECDH key exchange, in particular the Elliptic
curve multiplication ivk - EPK performed in TrialDecrypt (line .

We note that the Zcash team was aware that the ECDH key exchange implementation is
not constant time, and that this might be exploitable by a co-located adversary [6]. The key
differentiator of the attack presented here is that REJECT or PING enable this timing side-
channel to be used remotely.

The Elliptic Curve multiplication routine used in Zcash is indeed not constant-time: it uses
a standard double-and-add procedure, with different (unified) formulas for point addition and
doubling. The underlying F, field arithmetic is not constant time as all operations end with a
final reduction that subtracts the modulus ¢ if necessary.

As a proof-of-concept, we adapted Kocher’s original RSA timing attack [7] to Zcash’s Elliptic
Curve multiplication routine. For a fixed secret ivk, we locally timed the multiplication routine

8https://github.com/zcash/zcash/blob/0512e9e/src/main. cpp#L5042
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Figure 2: Response times for the PING attack in a LAN setting.

for 1 million random EPK points. The timing distribution is plotted in Figure [} and is clearly
not constant. Assuming we have already recovered the j most significant bits of ivk, we recover
the (j+ 1)-th bit by correlating the time of a point doubling or point multiplication with the total
multiplication time. Conditioned on all previous bits being recovered successfully, the following
bit is recovered with 98.4% probability. With a clever backtracking mechanism to resolve the few
false guesses, the full key can be recovered with about one million samples.

The query complexity of this attack is fairly high. The attack was performed in an “idealized”
setting that ignores the time taken by the network and transaction verification, which would add
significant noise and further increase the sample complexity of a full remote attack.

Our proof-of-concept of course also confirms the Zcash team’s suspicion that timing side-
channels could be exploited by a co-located adversary to recover secret key material.

5 Discussion

5.1 Attack Practicality

Payee Discovery. We built a proof-of-concept of the payee-discovery attack from Section |4.3.1
on a regtest network, where the attacker and victim machines reside in the same LAN. The attacker
relays 200 transactions to the victim, half of which are payments to the victim. Figure 2| shows the
distribution of the victim’s response time to the ping message. Except for five clear outliers (with a
response time of over 60ms), the response time indicates whether the victim was the transaction’s
payee with 100% precision.

The average timing difference of about 2ms between a successful or failed TrialDecrypt is
significant, and can result in a fairly powerful attack even in a regular WAN, although the attacker
will not be able to determine the payee of every shielded transaction with absolute certainty.

Linkability. We validated the REJECT variant of the node linkability attack from Section [1.3.2]
and the diversified address linkability attack from Section [4.3.3]in a local Zcash network, wherein
an attacker sends ciphertexts corresponding to malformed plaintexts to a victim node running the
unmodified Zcash client.

Both attacks are very easy to mount. They simply require sending one or two transactions to
every peer in the network and to check for an answer with a “reject” message.

One potential complication is that a peer that receives a malformed transaction could relay the
transaction to the intended victim before the attacker’s message reaches the victim. In this case,
the victim will send a “reject” message to the relaying peer, and not respond to the attacker’s
message as the transaction is already in the victim’s memory pool. Since a peer will first validate



a transaction before relaying it, the attacker’s messages are likely to reach the victim node first.
In the event that the attacker does fail to receive a “reject” message, the attack can simply be
repeated with a different transaction.

The attack is cheap: the attacker’s transaction can simply send 0 funds to the victim. The
attack also works best when setting a fee of 0, as this limits the possibility of the transaction being
mined—thereby crashing the victim node (we note that the victim node crashing as a result of a
mined malformed transaction can also lead to an IP address recovery simply by monitoring which
node disconnected from the network).

Denial of Service. We also validated the DoS vulnerability from Section [4.3.4]in a local Zcash
network. Mounting a large-scale DoS attack would require an attacker to be in possession of
shielded payment addresses for many Zcash users. A plausible candidate would be a service with
many Zcash clients, such as an exchange that supports shielded addresses. A DoS attack on a
large fraction of Zcash miners might be unrealistic as many miners may not have generated a
shielded address.

Remote Timing. The feasibility of the remote timing attack on the ECDH key exchange is
harder to assess. Our local timing attack on the elliptic curve multiplication routine required
one million samples to be effective and this number would be much larger if the variability in
network delay and transaction confirmation time were considered. Yet, it is not inconceivable
that our timing attack could be improved further. If a remote timing attack were possible with a
moderately large number of samples (e.g., 10,000), one difficulty with the REJECT attack variant
might be in sending all those transactions to a victim before any one of them gets mined—thereby
crashing the victim. We could not find statistics on how frequently transactions with a 0 fee get
mined in Zcash. Another possibility would be for an attacker to eclipse a victim node from the
rest of the network while performing the remote timing attack.

5.2 What is Affected

o The attacks affects the official Zcash client implementation between versions v.2.0.0 (the first
Sapling version) and version 2.0.7-2. Any user of the client that has generated a shielded
address and shared the public payment address (“zaddr”) with a third-party may be vulner-
able to the attacks described above (the IP recovery attack can be mitigated by using Tor).
All attacks have been mitigated in Zcash release v.2.0.7-3 [2, I]. The attacks
cannot be applied retroactively to earlier transactions.

e Any Zcash forks with support for Sapling shielded addresses inherit these attacks and should
update to Zcash’s v.2.0.7-3 release or implement their own fix.

e All Zcash wallets that support shielded addresses and that use the official Zcash client are
vulnerable. These include Zepio, ZecWallet and ZECmate Swing Wallet.

e Although our attacks do not exploit a specific flaw in the Zcash specification [4], we note that
the specification fails to specify what action should be taken if the version byte of the Note
plaintext is incorrect. This shortcoming in the specification had been previously notedﬂ

5.3 What is not Affected

e The not-yet-released Android Guarda walle”] with support for shielded transactions is im-
mune to the REJECT attack as it simply ignores malformed Note plaintexts. The wallet is
also immune to the PING attack since it does not act as a peer-to-peer node.

9https://github.com/zcash/zips/issues/228
Ohttps://github.com/guardaco/guarda-android-wallets/tree/gh-zapling-main
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e Blockchain scanning is not yet implemented in the currently developed Zebra clienf|so that
client is not vulnerable to these attacks. As the Rust language does not support exceptions,
it is plausible that the REJECT attack would not have affected Zebra.

e The librustzcash library used in the Zcash client has an additional implementation of
Note decryption in Rust which returns None if the underlying plaintext is malformed or if
the opening of the Note commitment is incorrect. As far as we can tell, this implementation
is currently unused.

5.4 Remediations

The remediation for the REJECT attack is very simple: treat a plaintext parsing failure similarly
to a decryption failure, and ignore the offending ciphertext. This fix was implemented in release
2.0.7-3 of the Zcash client [11 [2].

More generally, we believe that a more granular and rigorous treatment of error conditions
(which appears to be a conscious design decision in Zebra) will go a long way to reduce the
possibility of such bugs. We have investigated other situations where the Zcash client throws
exceptions when failing to serialize messages (e.g., if the overWintered flag takes on an incorrect
value), but have not found these to cause any vulnerabilities.

The REJECT and PING attacks exploit a coupling between the Zcash node’s peer-to-peer
functionality and its wallet functionality. Release 2.0.7-3 of the Zcash client [Il [2] addresses this
issue by refactoring the TrialDecrypt functionality into a separate thread, that periodically pulls
the list of recently received transactions and attempts to decrypt all associated Note ciphertextsB
The timing of the TrialDecrypt call thus no longer affects the timing of peer-to-peer functionalities
such as ping messages—thereby preventing the PING attack.

Finally, we believe Zcash should strive towards producing a side-channel resistant implemen-
tation of their core cryptographic primitives. Side-channel resistance may have seemed like a
secondary concern, given that the Zcash protocol is primarily non-interactive. As our attacks
have shown, a single bug in the in-band secret distribution routine inadvertently allowed for a
two-way interaction between an attacker and victim, thereby opening up a potential remote tim-
ing side-channel.
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