Cryptographic hashing

- ◆ Two families of hash functions:
- 1. Non-keyed hash functions:
 - H: $\{0,1\}^* \rightarrow \{0,1\}^n$ (e.g. n=160) • Used for password protection,
 - digital signatures, ...
- 2. Keyed hash functions:
 - H_{key} : $\{0,1\}^* \rightarrow \{0,1\}^n$ (e.g. n=96)
 - Used for message integrity (MAC) .

Non-keyed hash functions

$H{:}~\{0,1\}^{\star}~\rightarrow~\{0,1\}^n$

- The hash H(M) of a message M is called a Message Digest.
- Hash functions satisfy different properties depending on the application.

Collision resistance

- H: $\{0,1\}^* \rightarrow \{0,1\}^n$ is collision resistant if:
 - It is hard to find $M_{1^{\prime}}~M_{2}~~s.t.~~H(M_{1})$ = $H(M_{2})~$.
- ◆ Application: digital signatures.
 - Signature = Sig_{alice} [H(M) , alice-priv-key]
- Suppose adversary has M_1 , M_2 s.t. $H(M_1) = H(M_2)$
 - Adversary asks Alice to sign $M_{\! 1}\,.$
 - Alice's sig is also a sig on $\rm M_2$.

Relation between properties Roughly speaking:

Collision resistance \Rightarrow 2nd preimage resistance \Rightarrow

preimage resistance.

- In other words:
 - Hardest to construct collision resistant hashing.
 - Much easier to construct 2nd preimage resistance.
- From here on: focus on collision resistance.

Birthday attack

- $\begin{array}{l} \bullet \quad Birthday \; paradox: \\ r_1, \; ..., \; r_n \in [0, 1, \underline{...} B] \; \; indep. \; random \; integers. \\ When \; n = 1.2 \; \sqrt{B} \; \; then \\ Pr[\; \exists \; i \neq j \; : \; r_i = r_j \;] \; > \; \frac{1}{2} \end{array}$
- ♦ msg-digest only 64 bits long ⇒
 can find collision in 2³² tries.
- ◆ Typical digest size = 160 bits. (e.g. SHA-1)
 ⇒ collision time is 2⁸⁰ tries.

Motivation

- Why Merkle-Damgard iterated construction?
- ◆Lemma: Suppose compression func F(M_i, H_i) is collision resistant.
 ⇒ resulting hash function is coll. resistant.
- ♦ Proof:
 - Adversary finds M_1 , M_2 s.t. $H(M^1) = H(M^2)$ Then $\exists i$ s.t. $F(M_{i_1}^1, H_i^1) = F(M_{i_2}^2, H_i^2)$

Keyed hash functions

- ◆ Note: key k needed to evaluate function.
- Main application: Message Authentication Codes (MAC) Guarantee message integrity.
- H_k(M) is a cryptographic "checksum".
 Ensures message has not been tampered.

MAC length

- ◆ Typical CBC-MAC length = 40 bits.
 - \Rightarrow security of 2⁴⁰ (guessing prob).
- ♦ Note: no birthday attack on MACs.
 ⇒ MACs are shorter than message-digest.

Hash based MAC

- ◆ MACs based on a non-keyed hash function h.
- ♦ <u>Attempt 1</u>: MAC_k(M) = h (k || M) I nsecure. Adv. can elongate M.
- ◆ <u>Attempt 2</u>: MAC_k(M) = h (M || k) I nsecure. Birthday attack.
- ◆ Envelope method: MAC_{k,k}(M) = h (k || M || k)

Preferred method: HMAC

- ♦ HMAC used in TPsec, SSL, TLS.
- HMAC_k(M) = h(k||pad₁ || h(k||pad₂||M))
- "Thm": If compr. func. In h is a MAC and h is collision resistant then HMAC is a MAC.
- ◆In IPsec, SSL use 96 bit HMAC.

Performance				
◆ HMAC is much faster than CBC-MAC.				
On 200MhZ Pentium:				
	Name	hash-len	speed	
	MD5	128	28.5 MB/sec	
	SHA-1	160	15.25 MB/sec	
	3DES	64	1.6 MB/sec	
	I DEA	64	3 MB/sec	
				23

