
1

1

Software Security Holes
and Defenses

2

Design of a secure system
uFollows a ring design.

• Every object has an associated security attribute.
• Every subject has a security clearance.

uRestricted interaction between rings.

Highest
security

Least
secure

3

Example: trusted OS

• TCB: part of the OS trusted to enforce security policy.

Hardware

Security kernel
Access control
Authentication

Operating System

User tasks

TCB

4

Bell-La Pdula Model
u Set of objects: O. Set of subjects: S.
u Each o∈O and s∈S

has a security class C(o) and C(s).

u Property I: subj. s may have read access to obj. o
only if: C(o) ≤C(s) .

u Property *: subj. s who has read access to obj. o
may have write access to obj. p
only if: C(o) ≤C(p).

u Model errors on safety.

5

Evaluation: the orange book
uDepartment of Defense, 1979:

Trusted Computer System Evaluation Criteria.
u Ratings:

• D: Minimal protection. Anyone can get this rating.
• C1: Discretionary security. Users can disable sec. mech.
• C2: Controlled access. Per user protection. Discretionary.
• B1: Labeled protection. Every object labeled. Bell-La Padula
• B2: Structured protection. More OS module verification.
• B3: Security domains. Modular OS design. Clear sec. policy.
• A1: Verified design. Formally verified system design.

u Example: NT is considered C2 compliant.
6

Buffer Overflow Attacks

2

7

u Extremely common bug.
u Over 50% of all CERT advisories:

• 1997: 16 out of 28 CERT advisories.
• 1998: 9 out of 13 -”-
• 1999: 6 out of 12 -”-

u Often leads to total compromise of host.
• Fortunately: exploit requires expertise and patience.
• Two steps:

– Locate buffer overflow within an application.
– Design an exploit.

Buffer overflows

8

What are buffer overflows?
u Suppose a web server contains a function:

void func(char *str) {
char buf[128];

strcpy(buf, str);
}

u When the function is invoked the stack looks like:

u What if *str is 136 bytes long? After strcpy:

strret-addrsfpbuf
top
of

stack

str
top
of

stack
*str ret

9

Basic stack exploit
u Main problem: no range checking in strcpy().
u Suppose *str is such that after strcpy stack looks like:

u When func() exits, the user will be given a shell !!
u Note: attack code runs in stack.

u To determine ret guess position of stack when func() is called.

top
of

stack
*str ret Code for P

Program P: exec(“/bin/ sh”)

10

Exploiting buffer overflows
u Suppose web server calls func() with given URL.

u Attacker can create a 200 byte URL to obtain shell
on web server.

u Some complications:
• Program P should not contain the ‘\0’ character.
• Overflow should not crash program before func() exists.

u Recent buffer overflows of this type:
• Overflow in MIME type field in MS Outlook.
• Overflow in ISAPI in IIS.

11

More general exploits
u Basic stack exploit can be prevented by marking

stack segment as non-executable.
• Code patches exist for Linux and Solaris.
• Does not block more general overflow exploits.

u General buffer overflow exploits are based on two
orthogonal steps:
• Arrange for attack code to be present

in program space.
• Cause program to execute attack code.

12

Causing program to exec attack code
u Stack smashing attack:

• Override return address in stack activation record
by overflowing a local buffer variable.

u Function pointers: (used to attack Linux superprobe)

• Overflowing buf will override function pointer.

u Longjmp buffers: longjmp(pos) (used to attack Perl 5.003)
• Overflowing buf next to pos overrides value of pos.

Heap
or

stackbuf[128] FP

3

13

Placing attack code in program
u Injecting attack code:

• Place code in stack variable (local vars).
• Place code in a heap variable (malloc’ed vars).
• Place code in static data segment (static vars).

u Using existing code: the libc exec function.
• Cause FP or ret-addr to point to libc exec func.
• At same time override first argument to be \bin\sh

arg1ret-addrsfpLcaol vars
top
of

stack

/bin/shexec
14

Finding buffer overflows
uHackers find buffer overflows as follows:

• Run web server on local machine.
• Issue requests with long tags.

All long tags end with “$$$$$”.
• If web server crashes,

search core dump for “$$$$$” to find
overflow location.

uSome automated tools exist. (eEye Retina, ISIC).

15

Preventing buf overflow attacks
uMain problem:

• strcpy(), strcat(), sprintf() have no range checking.
• “Safe” versions strncpy(), strncat() are often

misleading
– strncpy() may leave buffer unterminated.
– strncpy(), strncat() encourage off by 1 bugs.

uDefenses:
• Static source code analysis.
• Run time checking.
• Black box testing (e.g. eEye Retina, ISIC).

strncpy(dest, src, strlen(src)+1)

16

Static source code analysis
u Statically check source to detect buffer overflows.

• Several consulting companies.

u Can we automate the review process?
u Several tools exist:

• @stake.com (l0pht.com): SLINT (designed for UNIX)

• rstcorp: its4. Scans function calls.
• Berkeley: Wagner, et al. Tests constraint violations.

17

Run time checking: StackGuard
u Solution 1: Runtime range checking

• Significant performance degredation.
• Hard for languages like C and C++.

u Solutions 2: StackGuard (OGI)
• Run time tests for stack integrity.
• Embed “canaries” in stack frames and verify their

integrity prior to function return.

strretsfplocal
top
of

stackcanarystrretsfplocal canary

Frame 1Frame 2

18

Canary Types
u Random canary:

• Choose random string at program startup.
• Insert canary string into every stack frame.
• Verify canary before returning from function.
• To corrupt random canary attacker must learn

current random string.
u Terminator canary:

Canary = 0, newline, linefeed, EOF
• String functions will not copy beyond terminator.
• Hence, attacker cannot use string functions to

corrupt stack.

4

19

StackGuard (Cont.)
uStackGuard implemented as a GCC patch.

uMinimal performance effects.

uNewer version: PointGuard.
• Protects function pointers and setjmp buffers by

placing canaries next to them.
• More noticeable performance effects.

u Note: Canaries don’t offer fullproof protection.
• Some stack smashing attacks can leave canaries untouched.

20

Timing attacks

21

Timing attacks
u Timing attacks extract secret information

based on the time a device takes to respond.

u Applicable to:
• Smartcards.
• Cell phones.
• PCI cards.

22

Timing attacks: example
u Consider the following pwd checking code:

int password-check(char *inp, char *pwd)
if (strlen(inp) != strlen(pwd)) return 0;
for(i=0; i < strlen(pwd); ++i)

if (*inp[i] != *pwd[i])
return 0;

return 1;

u A simple timing attack will expose the password one
character at a time.

23

Timing attacks: example
u Correct code:

int password-check(char *inp, char *pwd)
oklen = 1;
if (strlen(inp) != strlen(pwd)) oklen=0;
for(ok=1, i=0; i < strlen(pwd); ++i)

if (*inp[i] != *pwd[i])
ok = ok & 0;

else
ok = ok & 1;

return ok & oklen;

u Timing attack is ineffective.
24

Denial of Service

5

25

Denial of Service (DoS)
uDisabling a service by consuming resources.

uExample: Apache web server.
• Apache runs N preforked processes to handle

incoming connections.
• Attacker: open N very slow long lived connections

to web server.
• All Apache processes will serve slow connections.

No new connections will be served.
• Solution: secure connection mgmt, e.g. Ingrian.

26

Distributed Denial of Service
uUsing multiple hosts to launch Denial of

Service attacks.
uWidely available DDoS tools:

• Smurf
• Trinoo
• Trible Flood Network (TFN, TFN2K)
• Stacherldraht
• Shaft
• Mstream
• …

27

Smurf
u Send ICMP packet with forged origin IP.

• All machines that receive packet respond to victim.

u Router or firewall should be configured to
block such packets.

attacker router

forged ICMP
to broadcast

address

victim

servers

response from
servers

28

Tribal Flood Network (TFN2K)
uCoordinated distributed attack.

• Much harder to detect and prevent.

master

attacker

agents

victim

TCP/SYN, UDP, ICMP/PING,
Broadcast PING

Commands encrypted
with CAST-256.
Difficult to detect. Commands via

TCP, UDP, ICMPno ACKs

29

Defenses
uConstantly test if local machines became

DDoS agents (e.g. TFN agents).
• FBI publishes tools to detect known agents.
• Cat and mouse game…

uMuch work on detecting attack origin:
• Savage et al.: routers embed info in packets.

Victim can slowly piece together attack origin.
• Burch, Cheswick: controlled flooding of subnets.
• Bellovin: routers sign random fraction of packets.

30

Covert channels
u Bell-La padula: prevent subjects with different

access rights from communicating.
• Problem: covert channels.

u Covert channels:
• communication channels undetected by the

security policy enforcer.

u Example: File locking:
• High clearance subject frequently locks and unlocks a file.
• Low clearance subject checks lock status.
• Using synchronized timer: 1000bit/sec transfer rate.

6

31

Covert channels using DNS
uJava security manager:

• Prevents applets from communicating with most
hosts.

• Uses DNS to get IP address of requested
hostname.

uCovert channel: (Dean96)
• Applet frequently attempts to communicate with

hosts: attack0nnn.com or attack1nnn.com
• By monitoring DNS attacker reads information.

32

References
u Buffer overflows: attacks and defenses for the

vulnerability of the decade.
http://www.immunix.org/StackGuard/discex00.pdf

u A first step towards automated detection of buffer
overrun vulnerabilities.
http://www.cs.berkeley.edu/~daw/papers/overruns-ndss00.ps

u Smashing the stack for fun and profit.
www.phrack.com Article p49-14. By Aleph1

u Bypassing StackGuard and StackShield.
www.phrack.com Article p56-6. By Bulba and Kil3r

u Distributed denial of service attacks/tools.
http://staff.washington.edu/dittrich/misc/ddos

u Practical network support for IP traceback.
http://www.cs.washington.edu/home/savage/traceback.html

