## Part I: Arithmetic modulo primes

## Basic stuff

1. We are dealing with primes $p$ on the order of 300 digits long, ( 1024 bits).
2. For a prime $p$ let $\mathbb{Z}_{p}=\{0,1,2, \ldots, p-1\}$.

Elements of $\mathbb{Z}_{p}$ can be added modulo $p$ and multiplied modulo $p$.
3. Fermat's theorem: for any $g \neq 0 \bmod p$ we have: $\quad g^{p-1}=1 \bmod p$.

Example: $3^{4} \bmod 5=81 \bmod 5=1$
4. The inverse of $x \in \mathbb{Z}_{p}$ is an element $a$ satisfying $a \cdot x=1 \bmod p$.

The inverse of $x$ modulo $p$ is denoted by $x^{-1}$.
Example: 1. $3^{-1} \bmod 5=2 \quad$ since $2 \cdot 3=1 \bmod 5$.
2. $2^{-1} \bmod p=\frac{p+1}{2}$.
5. All elements $x \in \mathbb{Z}_{p}$ except for $x=0$ are invertible.

Simple inversion algorithm: $\quad x^{-1}=x^{p-2} \bmod p$.
Indeed, $\quad x^{p-2} \cdot x=x^{p-1}=1 \bmod p$.
6. Denote by $\mathbb{Z}_{p}^{*}$ the set of invertible elements in $\mathbb{Z}_{p}$. Hence, $\mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$.
7. We now have algorithm for solving linear equations: $a \cdot x=b \bmod p$.

Solution: $\quad x=b \cdot a^{-1}=b \cdot a^{p-2} \bmod p$.
What about an algorithm for solving quadratic equations?

## Structure of $\mathbb{Z}_{p}^{*}$

1. $\mathbb{Z}_{p}^{*}$ is a cyclic group.

In other words, there exists $g \in \mathbb{Z}_{p}^{*}$ such that $\mathbb{Z}_{p}^{*}=\left\{1, g, g^{2}, g^{3}, \ldots, g^{p-2}\right\}$.
Such a $g$ is called a generator of $\mathbb{Z}_{p}^{*}$.
Example: $\quad$ in $\mathbb{Z}_{7}^{*}: \quad\langle 3\rangle=\left\{1,3,3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}\right\}=\{1,3,2,6,4,5\} \quad(\bmod 7)=\mathbb{Z}_{7}^{*}$.
2. Not every element of $\mathbb{Z}_{p}^{*}$ is a generator.

Example: $\quad$ in $\mathbb{Z}_{7}^{*}$ we have $\langle 2\rangle=\{1,2,4\} \neq \mathbb{Z}_{7}^{*}$.
3. The order of $g \in \mathbb{Z}_{p}^{*}$ is the smallest positive integer $a$ such that $g^{a}=1 \bmod p$.

The order of $g \in \mathbb{Z}_{p}^{*}$ is denoted $\operatorname{ord}_{p}(g)$.
Example: $\quad \operatorname{ord}_{7}(3)=6 \quad$ and $\quad \operatorname{ord}_{7}(2)=3$.
4. Lagrange's theorem: for all $g \in \mathbb{Z}_{p}^{*}$ we have that $\operatorname{ord}_{p}(g)$ divides $p-1$.
5. If the factorization of $p-1$ is known then there is a simple and efficient algorithm to determine $\operatorname{ord}_{p}(g)$ for any $g \in \mathbb{Z}_{p}^{*}$.

## Quadratic residues

1. The square root of $x \in \mathbb{Z}_{p}$ is a number $y \in \mathbb{Z}_{p}$ such that $y^{2}=x \bmod p$.

Example: 1. $\quad \sqrt{2} \bmod 7=3 \quad$ since $\quad 3^{2}=2 \bmod 7$.
2. $\sqrt{3} \bmod 7$ does not exist.
2. An element $x \in \mathbb{Z}_{p}^{*}$ is called a Quadratic Residue ( QR for short) if it has a square root in $\mathbb{Z}_{p}$.
3. How many square roots does $x \in \mathbb{Z}_{p}$ have?

If $\quad x^{2}=y^{2} \bmod p \quad$ then $\quad 0=x^{2}-y^{2}=(x-y)(x+y) \bmod p$.
Since $\mathbb{Z}_{p}$ is an "integral domain" we know that $x=y$ or $x=-y \bmod p$. Hence, elements in $\mathbb{Z}_{p}$ have either zero square roots or two square roots. If $a$ is the square root of $x$ then $-a$ is also a square root of $x$ modulo $p$.
4. Euler's theorem: $\quad x \in \mathbb{Z}_{p}$ is a $\mathrm{QR} \quad$ if and only if $\quad x^{(p-1) / 2}=1 \bmod p$. Example: $\quad 2^{(7-1) / 2}=1 \bmod 7 \quad$ but $\quad 3^{(7-1) / 2}=-1 \bmod 7$.
5. Let $g \in \mathbb{Z}_{p}^{*}$. Then $a=g^{(p-1) / 2}$ is a square root of 1 . Indeed, $a^{2}=g^{p-1}=1 \bmod p$. Square roots of 1 modulo $p$ are 1 and -1 . Hence, for $g \in \mathbb{Z}_{p}^{*}$ we know that $g^{(p-1) / 2}$ is 1 or -1 .
6. Legendre symbol: $\quad$ for $x \in Z_{p}$ define $\quad\left(\frac{x}{p}\right)=\left\{\begin{array}{rll}1 & \text { if } & x \text { is a } \mathrm{QR} \text { in } \mathbb{Z}_{p} \\ -1 & \text { if } & x \text { is not a } \mathrm{QR} \text { in } \mathbb{Z}_{p} . \\ 0 & \text { if } & x=0 \bmod p\end{array}\right.$.
7. By Euler's theorem we know that $\left(\frac{x}{p}\right)=x^{(p-1) / 2} \bmod p$. $\Longrightarrow \quad$ the Legendre symbol can be efficiently computed.
8. Easy fact: let $g$ be a generator of $\mathbb{Z}_{p}^{*}$. Let $x=g^{r}$ for some integer $r$.

Then $x$ is a QR in $\mathbb{Z}_{p}$ if and only if $r$ is even.

## $\Longrightarrow \quad$ the Legendre symbol reveals the parity of $r$.

9. Since $x=g^{r}$ is a QR if and only if $r$ is even it follows that exactly half the elements of $\mathbb{Z}_{p}$ are QR's.
10. When $p=3 \bmod 4$ computing square roots of $x \in \mathbb{Z}_{p}$ is easy.

Simply compute $a=x^{(p+1) / 4} \bmod p$.
$a=\sqrt{x} \quad$ since $\quad a^{2}=x^{(p+1) / 2}=x \cdot x^{(p-1) / 2}=x \cdot 1=x \quad(\bmod p)$.
11. When $p=1 \bmod 4$ computing square roots in $\mathbb{Z}_{p}$ is possible but somewhat more complicated (randomized algorithm).
12. We now have an algorithm for solving quaratic equations in $\mathbb{Z}_{p}$.

We know that if a solution to $a x^{2}+b x+c=0 \bmod p$ exists then it is given by:

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad(\bmod p)
$$

Hence, the equation has a solution in $\mathbb{Z}_{p}$ if and only if $\Delta=b^{2}-4 a c$ is a QR in $\mathbb{Z}_{p}$. Using our algorithm for taking square roots in $\mathbb{Z}_{p}$ we can find $\sqrt{\Delta} \bmod p$ and recover $x_{1}$ and $x_{2}$.
13. What about cubic equations in $\mathbb{Z}_{p}$ ? There exists an efficient randomized algorithm that solves any equation of degree $d$ in time polynomial in $d$.

## Computing in $\mathbb{Z}_{p}$

1. Since $p$ is a huge prime (e.g. 1024 bits long) it cannot be stored in a single register.
2. Elements of $\mathbb{Z}_{p}$ are stored in buckets where each bucket is 32 or 64 bits long depending on the processor's chip size.
3. Adding two elements $x, y \in \mathbb{Z}_{p}$ can be done in linear time in the length of $p$.
4. Multiplying two elements $x, y \in \mathbb{Z}_{p}$ can be done in quadratic time in the length of $p$. If $p$ is $n$ bits long, more clever (and practical) algorithms work in time $O\left(n^{1.7}\right)$ (rather than $O\left(n^{2}\right)$ ).
5. Inverting an element $x \in \mathbb{Z}_{p}$ can be done in quadratic time in the length of $p$.
6. Using the repeated squaring algorithm, $x^{r} \bmod p$ can be computed in time $\left(\log _{2} r\right) O\left(n^{2}\right)$ where $p$ is $n$ bits long. Note, the algorithm takes linear time in the length of $r$.

## Summary

Let $p$ be a 1024 bit prime. Easy problems in $\mathbb{Z}_{p}$ :

1. Generating a random element. Adding and multiplying elements.
2. Computing $g^{r} \bmod p$ is easy even if $r$ is very large.
3. Inverting an element. Solving linear systems.
4. Testing if an element is a QR and computing its square root if it is a QR .
5. Solving polynomial equations of degree $d$ can be done in polynomial time in $d$.

Problems that are believed to be hard in $\mathbb{Z}_{p}$ :

1. Let $g$ be a generator of $\mathbb{Z}_{p}^{*}$. Given $x \in \mathbb{Z}_{p}^{*}$ find an $r$ such that $x=g^{r} \bmod p$. This is known as the discrete log problem.
2. Let $g$ be a generator of $\mathbb{Z}_{p}^{*}$. Given $x, y \in \mathbb{Z}_{p}^{*}$ where $x=g^{r_{1}}$ and $y=g^{r_{2}}$. Find $z=g^{r_{1} r_{2}}$. This is known as the Diffie-Hellman problem.
3. Finding roots of sparse polynomials of high degree.

For example finding a root of: $\quad x^{\left(2^{500}\right)}+7 \cdot x^{\left(2^{301}\right)}+11 \cdot x^{\left(2^{157}\right)}+x+17=0 \bmod p$.

