Basic number theory fact sheet

Part II: Arithmetic modulo composites

Basic stuff

1. We are dealing with integers N on the order of 300 digits long, (1024 bits). Unless otherwise stated, we assume N is the product of two equal size primes, e.g. on the order of 150 digits each (512 bits).
2. For a composite N let $\mathbb{Z}_{N}=\{0,1,2, \ldots, N-1\}$.

Elements of \mathbb{Z}_{N} can be added and multiplied modulo N.
3. The inverse of $x \in \mathbb{Z}_{N}$ is an element $y \in \mathbb{Z}_{N}$ such that $x \cdot y=1 \bmod N$.

An element $x \in \mathbb{Z}_{N}$ has an inverse if and only if x and N are relatively prime. In other words, $\operatorname{gcd}(x, N)=1$.
4. Elements of \mathbb{Z}_{N} can be efficiently inverted using Euclid's algorithm. If $\operatorname{gcd}(x, N)=1$ then using Euclid's algorithm it is possible to efficiently construct two integers $a, b \in \mathbb{Z}$ such that $a x+b N=1$. Reducing this relation modulo N leads to $a x=1 \bmod N$. Hence $a=x^{-1} \bmod N$.
Note: this inversion algorithm also works in \mathbb{Z}_{p} for a prime p and is more efficient than inverting x by computing $x^{p-2} \bmod p$.
5. Denote by \mathbb{Z}_{N}^{*} the set of invertible elements in \mathbb{Z}_{N}.
6. We now have an algorithm for solving linear equations: $a \cdot x=b \bmod N$.

Solution: $\quad x=b \cdot a^{-1}$ where a^{-1} is computed using Euclid's algorithm.
7. How many elements are in \mathbb{Z}_{N}^{*} ? We denote by $\varphi(N)$ the number of elements in \mathbb{Z}_{N}^{*}. We already know that $\varphi(p)=p-1$ for a prime p.
8. One can show that if $N=p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}$ then $\varphi(N)=N \cdot \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)$. In particular, when $N=p q$ we have that $\varphi(N)=(p-1)(q-1)=N-p-q+1$. Example: $\varphi(15)=|\{1,2,4,7,8,11,13,14\}|=8=2 * 4$.
9. Euler's theorem: for any $a \in \mathbb{Z}_{N}^{*}$ we have that $a^{\varphi(N)}=1 \bmod N$.

Note: Euler's theorem implies that for a prime p we have $a^{\varphi(p)}=a^{p-1}=1 \bmod p$ for all $a \in \mathbb{Z}_{p}^{*}$. Hence, Euler's theorem is a generalization of Fermat's theorem.

Structure of \mathbb{Z}_{N}

1. The Chinese Remainder Theorem (CRT): Let p, q be relatively primes integers and let $N=p q$. Given $r_{1} \in \mathbb{Z}_{p}$ and $r_{2} \in \mathbb{Z}_{q}$ there exists a unique element $s \in \mathbb{Z}_{N}$ such that $s=r_{1} \bmod p$ and $s=r_{2} \bmod q$. Furthermore, s can be computed efficiently.
2. The CRT shows that each element $s \in \mathbb{Z}_{N}$ can be viewed as a pair $\left(s_{1}, s_{2}\right)$ where $s_{1}=s \bmod p$ and $s_{2}=s \bmod q$. The uniqueness guarantee shows that each pair $\left(s_{1}, s_{2}\right) \in \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ corresponds to one element of \mathbb{Z}_{N}. For example, the pair $(1,1)$ corresponds to $1 \in \mathbb{Z}_{N}$.
3. Note that by the CRT if $x=y \bmod p$ and $x=y \bmod q$ then $x=y \bmod N$.
4. An element $s \in \mathbb{Z}_{N}$ is invertible if and only if $s \bmod p$ in invertible in \mathbb{Z}_{p} and $s \bmod q$ is invertible in \mathbb{Z}_{q}. Hence, the number of invertible elements in \mathbb{Z}_{N} is $\varphi(N)=(p-1)(q-1)$.
5. An element $s \in \mathbb{Z}_{N}^{*}$ is a Q.R. if and only if $s \bmod p$ is a Q.R. in \mathbb{Z}_{p} and $s \bmod q$ is a Q.R. in \mathbb{Z}_{q}. Hence, the number of Q.R. in \mathbb{Z}_{N} is $\frac{p-1}{2} \cdot \frac{q-1}{2}=\frac{\varphi(N)}{4}$.
6. Jacobi symbol: for $x \in Z_{N}$ define $\left(\frac{x}{N}\right)=\left(\frac{x}{p}\right) \cdot\left(\frac{x}{q}\right)$.

As it turns out, there is en efficient algorithm to compute the Jacobi symbol of $x \in \mathbb{Z}_{N}$ without knowing the factorization of N.
7. Consider the RSA function $f(x)=x^{e} \bmod N$. When e is odd we have that:

$$
\left(\frac{x^{e}}{N}\right)=\left(\frac{x^{e}}{p}\right) \cdot\left(\frac{x^{e}}{q}\right)=\left(\frac{x}{p}\right) \cdot\left(\frac{x}{q}\right)=\left(\frac{x}{N}\right)
$$

Hence, given an RSA ciphertext $C=x^{e} \bmod N$ the Jacobi symbol of C reveals the Jacobi symbol of x.

Computing in \mathbb{Z}_{N}

1. Since N is a huge prime (e.g. 1024 bits long) it cannot be stored in a single register.
2. Elements of \mathbb{Z}_{N} are stored in buckets where each bucket is 32 or 64 bits long depending on the processor's register size.
3. Adding two elements $x, y \in \mathbb{Z}_{N}$ can be done in linear time in the length of N.
4. Multiplying two elements $x, y \in \mathbb{Z}_{N}$ can be done in quadratic time in the length of N. For an n bit integer N faster multiplication algorithms work in time $O\left(n^{1.7}\right)$ (rather than $O\left(n^{2}\right)$).
5. Inverting an element $x \in \mathbb{Z}_{N}$ can be done in quadratic time in the length of N using Euclid's algorithm.
6. Using the repeated squaring algorithm, $x^{r} \bmod N$ can be computed in time $\left(\log _{2} r\right) O\left(n^{2}\right)$ where N is n bits long. Note, the algorithm takes linear time in the length of r.
7. Efficient exponentiation modulo $N=p q$ when the factorization of N is known: to compute $a=x^{s} \bmod N$ one does the following:
(a) Compute $a_{1}=x^{s} \bmod p$ and $a_{2}=x^{s} \bmod q$. Note that it suffices to compute $a_{1}=x^{s \bmod p-1} \bmod p$ and $a_{2}=x^{s \bmod q-1} \bmod q$.
(b) Use the Chinese Remainder Theorem to construct $a \in \mathbb{Z}_{N}$ such that $a=a_{1} \bmod p$ and $a=a_{2} \bmod q$. Then $a=x^{s} \bmod N$ since this relation holds modulo p and modulo q.

Since p and q are half the size of N arithmetic modulo p and q is four times as fast (recall, multiplication takes quadratic time). Furthermore, $s \bmod p-1$ and $s \bmod q-1$ are each roughly half that size of s (we are assuming s is as large as N). Hence, computing of $a_{1}=x^{s \bmod p-1} \bmod p$ is eight times faster than computing $a=x^{s} \bmod N$. Since we repeat this step twice, once for p and once for q, exponentiation using CRT is four times faster overall.

Summary

Let N be a 1024 bit integer which is a product of two 512 bit primes. Easy problems in \mathbb{Z}_{N} :

1. Generating a random element. Adding and multiplying elements.
2. Computing $g^{r} \bmod N$ is easy even if r is very large.
3. Inverting an element. Solving linear systems.

Problems that are believed to be hard if the factorization of N is unknown, but become easy if the factorization of N is known:

1. Finding the prime factors of N.
2. Testing if an element is a QR in \mathbb{Z}_{N}.
3. Computing the square root of a QR in \mathbb{Z}_{N}. This is provably as hard as factoring N. When the factorization of $N=p q$ is known one computes the square root of $x \in \mathbb{Z}_{N}^{*}$ by first computing the square root in \mathbb{Z}_{p} of $x \bmod p$ and the square root in \mathbb{Z}_{q} of $x \bmod q$ and then using the CRT to obtain the square root of x in \mathbb{Z}_{N}.
4. Computing e^{\prime} th roots modulo N when $\operatorname{gcd}(e, \varphi(N))=1$.
5. More generally, solving polynomial equations of degree d. This is believed to be hard when the factorization of N is unknown, but can be done in polynomial time in d when the factorization is given. When the factorization of N is given one solves the polynomial equation by first solving it modulo p and q and then using the CRT to obtain the roots in \mathbb{Z}_{N}.

Problems that are believed to be hard in \mathbb{Z}_{N} :

1. Let g be a generator of \mathbb{Z}_{N}^{*}. Given $x \in \mathbb{Z}_{N}^{*}$ find an r such that $x=g^{r} \bmod N$. This is known as the discrete log problem.
2. Let g be a generator of \mathbb{Z}_{N}^{*}. Given $x, y \in \mathbb{Z}_{N}^{*}$ where $x=g^{r_{1}}$ and $y=g^{r_{2}}$. Find $z=g^{r_{1} r_{2}}$. This is known as the Diffie-Hellman problem.

One-way functions

Recall: a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a (t, ϵ) one-way function if

1. There is an efficient algorithm that for any $x \in\{0,1\}^{n}$ outputs $f(x)$.
2. The function is hard to invert. More precisely, for any algorithm \mathcal{A} whose running time is at most t we have

$$
\operatorname{Pr}_{x \in\{0,1\}^{n}}[f(\mathcal{A}(f(x)))=f(x)]<\epsilon
$$

In other words, when given $f(x)$ as input algorithm \mathcal{A} is unlikely to output a y such that $f(y)=f(x)$.

Based on block ciphers If $E(M, k)$ is a block cipher secure against a chosen ciphertext attack then $f(k)=E(0, k)$ is a one way function. Such general one-way functions can be used for symmetric encryption, but cannot be used for efficient key-exchange.

Discrete log Fix a prime p and an element $g \in \mathbb{Z}_{p}^{*}$ of "large" order.
Define $f_{\text {Dlog }}(x)=g^{x} \bmod p$.
Main property: linear: Given $a \in \mathbb{Z}$ and $f(x), f(y)$ one can easily compute $f(a \cdot x)$ and $f(x+y)$.
The one-wayness of this function is essential for the security of the Diffie-Hellman protocol and ElGamal public key system.

RSA Let $N=p q$ be a product of two large primes. Let e be an integer relatively prime to $\varphi(N)$. Define $f_{R S A}(x)=x^{e} \bmod N$.
Main property: trapdoor. Given the factorization of N the function can be inverted efficiently.
The one wayness of this function is essential to the security of the RSA public key system.

Rabin Let $N=p q$ be a product of two large primes. Define $f_{\text {Rabin }}(x)=x^{2} \bmod N$. This function is one-way if there is no efficient algorithm to factor integers of the form $N=p q$. As in the case of RSA, the factorization of N enables efficient inversion. The one wayness of this function is essential to the security of Rabin's signature scheme.

