## The RSA Trapdoor Permutation

Dan Boneh<br>Stanford University

## Review: arithmetic mod composites

Let $N=p \cdot q$ where $p, q$ are prime
> Notation: $\quad Z_{N}=\{0,1,2, \ldots, N-1\}$

$$
\left(Z_{N}\right)^{*}=\left\{\text { invertible elements in } Z_{N}\right\}
$$

> Facts:

- $x \in Z_{N}$ is in $\left(Z_{N}\right)^{*} \quad \Leftrightarrow \quad \operatorname{gcd}(x, N)=1$
- Number of elements in $\left(\mathrm{Z}_{\mathrm{N}}\right)^{*}$ is $\varphi(\mathrm{N})=(\mathrm{p}-1)(\mathrm{q}-1)$
- Euler's the:

$$
\forall x \in\left(Z_{N}\right)^{*}: \quad x^{\varphi(N)}=1
$$

## Review: trapdoor permutations

Three algorithms: (G, F, $\mathrm{F}^{-1}$ )
> G: outputs pk, sk pk defines a function $\mathrm{F}(\mathrm{pk}, \cdot): \mathrm{X} \rightarrow \mathrm{X}$
> $\mathrm{F}(\mathrm{pk}, \mathrm{x})$ : evaluates the function at x
> $\mathrm{F}^{-1}$ (sk, y): inverts the function at y using sk

Secure trapdoor permutation (review): the func. $\mathrm{F}(\mathrm{pk}, \cdot)$ is one-way without the trapdoor sk.

## The RSA trapdoor permutation

> First published:

- Scientific American, Aug. 1977. (after some censorship entanglements)
> Currently the "work horse" of Internet security:
- Most Public Key Infrastructure (PKI) products.
- SSL/TLS: Certificates and key-exchange.
- Secure e-mail and file systems.


## The RSA trapdoor permutation

$>$ alg $G: \quad N=p q .\{N \approx 1024$ bits. $p, q \approx 512$ bits.
e -encryption exponent. $\quad \operatorname{gcd}(e, \varphi(N))=1$.
$>\operatorname{alg} \mathrm{F}: \quad \operatorname{RSA}(M)=M^{\mathbf{e}} \in \mathrm{Z}_{\mathrm{N}}{ }^{*} \quad$ where $M \in Z_{N}{ }^{*}$
> Trapdoor: d-decryption exponent. Where e.d=1 $(\bmod \varphi(N))$
$>\operatorname{alg} \mathrm{F}^{-1}$ :
$\operatorname{RSA}(M)^{d}=M^{e d}=M^{k \varphi(N)+1}=\left(M^{\varphi(N)}\right)^{k} \cdot M=M$
> $(n, e, t, \varepsilon)-R S A$ Assumption: For all t-time algs. $A$ :

$$
\operatorname{Pr}\left[\mathrm{A}(\mathrm{~N}, \mathrm{e}, \mathrm{x})=\mathrm{x}^{1 / \mathrm{e}}(\mathrm{~N}): \underset{\mathrm{N}, \mathrm{q} \leftarrow^{\mathbb{R} n \text {-bit primes, }}}{\mathrm{N} \leftarrow \mathrm{pq}, \quad \mathrm{x} \leftarrow \mathrm{R}_{\mathrm{N}}{ }^{*}}\right]<\varepsilon
$$

## Textbook RSA is insecure

> Textbook RSA encryption:

- public key: $(\mathbb{N}, e)$ Encrypt: $C=M^{e}(\bmod N)$
- private key: d Decrypt: $C^{d}=M(\bmod N)$
( $M \in \mathbf{Z}_{\mathrm{N}}{ }^{*}$ )
> Completely insecure cryptosystem:
- Does not satisfy basic definitions of security.
- Many attacks exist.
> The RSA trapdoor permutation is not a cryptosystem !


## A simple attack on textbook RSA


> Session-key $K$ is 64 bits. View $K \in\left\{0, \ldots, 2^{64}\right\}$ Eavesdropper sees: $C=K^{e}(\bmod N)$.
> Suppose $K=K_{1} \cdot K_{2}$ where $K_{1}, K_{2}<2^{34}$. (prob. $\approx 20 \%$ ) Then: $C / K_{1}{ }^{e}=K_{2}{ }^{e}(\bmod N)$
> Build table: C/1e, C/2e $, C / 3^{e}, \ldots, C / 2^{34 e}$. time: $2^{34}$ For $K_{2}=0, \ldots, 2^{34}$ test if $K_{2}{ }^{e}$ is in table. time: $2^{34.34}$
> Attack time: $\approx 240 \ll 264$

## RSA pub-key encryption (ISO std)

, $\left(E_{s}, D_{s}\right)$ : symmetric encryption scheme, AE-secure $H: Z_{N} \rightarrow K$ where $K$ is key space of $\left(E_{s}, D_{s}\right)$
> G: generate RSA params: pk $=(\mathrm{N}, \mathrm{e}), \quad \mathrm{sk}=(\mathrm{N}, \mathrm{d})$
> $E(p k, m)$ :
(1) choose random $x$ in $Z_{N}$
(2) $u \leftarrow R S A(x)=x^{e}, k \leftarrow H(x)$
(3) output ( $u, E_{s}(k, m)$ )
> D(sk, $(u, c))$ : output $D_{s}\left(H\left(\operatorname{RSA}^{-1}(u)\right), c\right)$

## RSA encryption in practice

> Never use textbook RSA.
> RSA in practice (since ISO standard is not often used) :

> Main question:

- How should the preprocessing be done?
- Can we argue about security of resulting system?


## PKCS1 V1.5

> PKCS1 mode 2: (encryption)

16 bits

| 02 | random pad | FF | msg |
| :--- | :--- | :--- | :--- |

1024 bits
> Resulting value is RSA encrypted.
> Widely deployed in web servers and browsers.
> No security analysis !!

## Attack on PKCS1

> Bleichenbacher 98. Chosen-ciphertext attack.
> PKCS1 used in SSL:

$\Rightarrow$ attacker can test if 16 MSBs of plaintext = '02'.
> Attack: to decrypt a given ciphertext $C$ do:

- Pick $r \in Z_{N}$. Compute $C^{\prime}=r^{e} \cdot C=(r \cdot \operatorname{PKCS1}(M))^{e}$.
- Send $C^{\prime}$ to web server and use response.


## Review: chosen CT security

> No efficient attacker can win the following game: (with non-negligible advantage)


Attacker wins if $b=b^{\prime}$

## PKCS1 V2.0 - OAEP

> New preprocessing function: OAEP [BR94]

Check pad on decryption.
Reject CT if invalid.

$>$ Thm [FOPS'01]: RSA is trap-door permutation $\Rightarrow$ RSA-OAEP is CCS when H,G are "random oracles".
> In practice: use SHA-256 for $H$ and $G$.

## OAEP Improvements

>OAEP+: [Shoup'01]
$\forall$ trap-door permutation $F$ F-OAEP+ is CCS when H,G,W are "random oracles".

> SAEP+: [B01]
RSA trap-door perm $\Rightarrow$ RSA-SAEP+ is CCS when H,W are "random oracle".


## Subtleties in implementing OAEP

```
OAEP-decrypt(C) \{
    error \(=0\);
    if \(\left(R S A^{-1}(C)>2^{n-1}\right)\)
        \{ error =1; goto exit; \}
    if ( pad( \(\left.\left.\operatorname{OAEP}^{-1}\left(\operatorname{RSA}^{-1}(\mathrm{C})\right)\right)!=" 01000^{0}\right)\)
    \{ error = 1; goto exit; \}
```

> Problem: timing information leaks type of error.
$\Rightarrow$ Attacker can decrypt any ciphertext $C$.
> Lesson: Don't implement RSA-OAEP yourself ...

## Part II: Is RSA a One-Way Function?

## Is RSA a one-way permutation?

> To invert the RSA one-way function (without d) attacker must compute: $M$ from $C=M^{e}(\bmod N)$.
> How hard is computing e'th roots modulo N ??
> Best known algorithm:

- Step 1: factor N. (hard)
- Step 2: Find e'th roots modulo $p$ and $q$. (easy)


## Shortcuts?

> Must one factor $N$ in order to compute e'th roots? Exists shortcut for breaking RSA without factoring?
> To prove no shortcut exists show a reduction:

- Efficient algorithm for e'th roots mod N
$\Rightarrow$ efficient algorithm for factoring N .
- Oldest problem in public key cryptography.
> Evidence no reduction exists:
- "Algebraic" reduction $\Rightarrow$ factoring is easy.
- Unlike Diffie-Hellman (Maurer'94).


## Improving RSA's performance

> To speed up RSA decryption use small private key $d . \quad C^{d}=M(\bmod N)$

- Wiener87: if $d<N^{0.25}$ then RSA is insecure.
- BD'98: if $d<N^{0.292}$ then RSA is insecure (open: $\mathrm{d}<\mathrm{N}^{0.5}$ )
- Insecure: priv. key $d$ can be found from (N,e).
- Small d should never be used.


## Wiener's attack

> Recall: e.d=1(mod $\varphi(N))$

$$
\begin{aligned}
& \Rightarrow \quad \exists k \in Z: \quad e \cdot d=k \cdot \varphi(N)+1 \\
& \Rightarrow \quad\left|\frac{e}{\varphi(N)}-\frac{k}{d}\right| \leq \frac{1}{d \varphi(N)}
\end{aligned}
$$

$\varphi(N)=N-p-q+1 \Rightarrow|N-\varphi(N)| \leq p+q \leq 3 \sqrt{N}$
$\mathrm{d} \leq \mathrm{N}^{0.25 / 3} \Rightarrow\left|\frac{e}{N}-\frac{k}{d}\right| \leq \frac{1}{2 d^{2}}$
Continued fraction expansion of e/N gives k/d.
$e \cdot d=1(\bmod k) \Rightarrow \operatorname{gcd}(d, k)=1$

## RSA With Low public exponent

> To speed up RSA encryption (and sig. verify) use a small e. $\quad C=M^{e}(\bmod N)$
> Minimal value: $e=3 \quad(\operatorname{gcd}(e, \varphi(N))=1)$
> Recommended value: $e=65537=2^{16+1}$
Encryption: 17 mod. multiplies.
> Several weak attacks. Non known on RSA-OAEP.

- Asymmetry of RSA: fast enc. / slow dec.
- ElGamal: approx. same time for both.


## Implementation attacks

> Attack the implementation of RSA.
> Timing attack: (Kocher 97)
The time it takes to compute $C^{d}(\bmod N)$ can expose d.
> Power attack: (Kocher 99)
The power consumption of a smartcard while it is computing $C^{d}(\bmod N)$ can expose $d$.
> Faults attack: (BDL 97)
A computer error during $C^{d}(\bmod N)$ can expose d.
OpenSSL defense: check output. 5\% slowdown.

## Key lengths

> Security of public key system should be comparable to security of block cipher.
NIST:

Cipher key-size<br>$\leq 64$ bits 80 bits<br>128 bits 256 bits (AES)

Modulus size 512 bits.
1024 bits 3072 bits.
15360 bits

- High security $\Rightarrow$ very large moduli.

Not necessary with Elliptic Curve Cryptography.

