
The RSA Trapdoor Permutation

Dan BonehDan Boneh

Stanford University

Review: arithmetic mod composites

� Let N = p⋅q where p,q are prime

� Notation: ZN = {0,1,2,…,N-1}

(ZN)* = {invertible elements in ZN}

� Facts:� Facts:

• x ∈ ZN is in (ZN)* ⇔ gcd(x,N) = 1

• Number of elements in (ZN)* is ϕ(N) = (p-1)(q-1)

� Euler’s thm: ∀ x∈ (ZN)* : x
ϕ(N)

= 1

Page 2

Review: trapdoor permutations

Three algorithms: (G, F, F-1)

� G: outputs pk, sk

pk defines a function F(pk, ⋅): X → X

� F(pk, x): evaluates the function at x

� F
-1

(sk, y): inverts the function at y using sk

Secure trapdoor permutation (review):

the func. F(pk, ⋅) is one-way without the trapdoor sk.

Page 3

The RSA trapdoor permutation

� First published:

• Scientific American, Aug. 1977.
(after some censorship entanglements)

Page 4

� Currently the “work horse” of Internet security:

• Most Public Key Infrastructure (PKI) products.

• SSL/TLS: Certificates and key-exchange.

• Secure e-mail and file systems.

The RSA trapdoor permutation

� alg G: N=pq. N ≈1024 bits. p,q ≈512 bits.
e – encryption exponent. gcd(e, ϕ(N)) = 1 .

� alg F: RSA(M) = Me ∈ZN
* where M∈ZN

*

Page 5

� Trapdoor: d – decryption exponent.

Where e⋅d = 1 (mod ϕ(N))

� alg F-1: RSA(M)
d
= Med

= Mkϕ(N)+1 = (Mϕ(N))
k
⋅M = M

� (n,e,t,ε)-RSA Assumption: For all t-time algs. A:

Pr[A(N,e,x) = x
1/e

(N) :] < εp,q ← n-bit primes,

N←pq, x←ZN
*

R

R

Textbook RSA is insecure

� Textbook RSA encryption:

• public key: (N,e) Encrypt: C = Me (mod N)

• private key: d Decrypt: Cd = M (mod N)

(M ∈∈∈∈ ZN
*)

Page 6

� Completely insecure cryptosystem:

• Does not satisfy basic definitions of security.

• Many attacks exist.

� The RSA trapdoor permutation is not a cryptosystem !

A simple attack on textbook RSA

� Session-key K is 64 bits. View K ∈ {0,…,264}
Eavesdropper sees: C = Ke (mod N) .

Web
Browser

Web
Server

CLIENT HELLO

SERVER HELLO (e,N) d

C=RSA(K)

Random
session-
key K

Page 7

� Session-key K is 64 bits. View K ∈ {0,…,2 }
Eavesdropper sees: C = Ke (mod N) .

� Suppose K = K1⋅⋅⋅⋅K2 where K1, K2 < 234 . (prob. ≈20%)

Then: C/K1
e = K2

e (mod N)

� Build table: C/1e, C/2e, C/3e, …, C/234e . time: 234

For K2 = 0,…, 234 test if K2
e is in table. time: 234⋅34

� Attack time: ≈240 << 264

RSA pub-key encryption (ISO std)

� (Es, Ds): symmetric encryption scheme, AE-secure

H: ZN → K where K is key space of (Es,Ds)

� G: generate RSA params: pk = (N,e), sk = (N,d)

� E(pk, m): (1) choose random x in ZN

(2) u ← RSA(x) = xe , k ← H(x)

(3) output (u , Es(k,m))

� D(sk, (u, c)): output Ds(H(RSA-1 (u)) , c)

Page 8

RSA encryption in practice

� Never use textbook RSA.

� RSA in practice (since ISO standard is not often used) :

msg Preprocessing

cip
h
e
rte

x
t

RSA

Page 9

� Main question:
• How should the preprocessing be done?
• Can we argue about security of resulting system?

msg
key

Preprocessing

cip
h
e
rte

x
t

RSA

PKCS1 V1.5

� PKCS1 mode 2: (encryption)

02 random pad FF msg

16 bits

Page 10

� Resulting value is RSA encrypted.

� Widely deployed in web servers and browsers.

� No security analysis !!

1024 bits

Attack on PKCS1

� Bleichenbacher 98. Chosen-ciphertext attack.

� PKCS1 used in SSL:

AttackerWeb
Server

dIs this
PKCS1?

ciphertextC=

C

Yes: continue

Page 11

⇒ attacker can test if 16 MSBs of plaintext = ’02’.

� Attack: to decrypt a given ciphertext C do:

• Pick r ∈ ZN. Compute C’ = re⋅C = (r ⋅ PKCS1(M))
e
.

• Send C’ to web server and use response.

Attacker
Server

PKCS1?
Yes: continue

No: error02

Review: chosen CT security (CCS)

� No efficient attacker can win the following game:
(with non-negligible advantage)

M0, M1

Decryption

Page 12

AttackerChallenger

b’∈{0,1}

Attacker wins if b=b’

C=E(Mb) b∈R{0,1}
Challenge

Decryption
oracle

≠C

PKCS1 V2.0 - OAEP

� New preprocessing function: OAEP [BR94]

H+

rand.M 01 00..0

Check pad
on decryption.

Page 13

� Thm [FOPS’01] : RSA is trap-door permutation ⇒
RSA-OAEP is CCS when H,G are “random oracles”.

� In practice: use SHA-256 for H and G.

G +

Plaintext to encrypt with RSA

on decryption.
Reject CT if invalid.

∈{0,1}n-1

OAEP Improvements

�OAEP+: [Shoup’01]

∀ trap-door permutation F
F-OAEP+ is CCS when
H,G,W are “random oracles”.

R

H+

G +

M W(M,R)

Page 14

�SAEP+: [B’01]

RSA trap-door perm ⇒

RSA-SAEP+ is CCS when

H,W are “random oracle”.

R

H+

M W(M,R)

Subtleties in implementing OAEP [M ’00]

OAEP-decrypt(C) {

error = 0;

if (RSA
-1

(C) > 2
n-1)

{ error =1; goto exit; }

Page 15

if (pad(OAEP
-1

(RSA
-1

(C))) != “01000”)

{ error = 1; goto exit; }}

� Problem: timing information leaks type of error.

⇒ Attacker can decrypt any ciphertext C.

� Lesson: Don’t implement RSA-OAEP yourself …

Part II:
Is RSA a One-Way Function?

Is RSA a one-way permutation?

� To invert the RSA one-way function (without d) attacker
must compute:

M from C = Me (mod N).

Page 17

� How hard is computing e’th roots modulo N ??

� Best known algorithm:
• Step 1: factor N. (hard)
• Step 2: Find e’th roots modulo p and q. (easy)

Shortcuts?

� Must one factor N in order to compute e’th roots?

Exists shortcut for breaking RSA without factoring?

� To prove no shortcut exists show a reduction:

• Efficient algorithm for e’th roots mod N

Page 18

• Efficient algorithm for e’th roots mod N

⇒ efficient algorithm for factoring N.

• Oldest problem in public key cryptography.

� Evidence no reduction exists: (BV’98)

• “Algebraic” reduction ⇒ factoring is easy.

• Unlike Diffie-Hellman (Maurer’94).

Improving RSA’s performance

� To speed up RSA decryption use

small private key d. Cd = M (mod N)

• Wiener87: if d < N0.25 then RSA is insecure.

• BD’98: if d < N0.292 then RSA is insecure

Page 19

• BD’98: if d < N0.292 then RSA is insecure

(open: d < N0.5)

• Insecure: priv. key d can be found from (N,e).

• Small d should never be used.

Wiener’s attack

� Recall: e⋅d = 1 (mod ϕ(N))

⇒ ∃ k∈Z : e⋅d = k⋅ϕ(N) + 1

⇒
e

ϕ(N)
k
d

- ≤ 1
dϕ(N)

Page 20

ϕ(N) = N-p-q+1 ⇒ |N- ϕ(N)| ≤ p+q ≤ 3√N

d ≤ N0.25/3 ⇒

Continued fraction expansion of e/N gives k/d.

e⋅d = 1 (mod k) ⇒ gcd(d,k)=1

e
N

k
d

- ≤ 1
2d2

RSA With Low public exponent

� To speed up RSA encryption (and sig. verify)

use a small e. C = Me (mod N)

� Minimal value: e=3 (gcd(e, ϕ(N)) = 1)

Recommended value: e=65537=216+1

Page 21

� Recommended value: e=65537=216+1

Encryption: 17 mod. multiplies.

� Several weak attacks. Non known on RSA-OAEP.

� Asymmetry of RSA: fast enc. / slow dec.

• ElGamal: approx. same time for both.

Implementation attacks

� Attack the implementation of RSA.

� Timing attack: (Kocher 97)
The time it takes to compute Cd (mod N)
can expose d.

Page 22

� Power attack: (Kocher 99)
The power consumption of a smartcard while
it is computing Cd (mod N) can expose d.

� Faults attack: (BDL 97)
A computer error during Cd (mod N)
can expose d.

OpenSSL defense: check output. 5% slowdown.

Key lengths

� Security of public key system should be
comparable to security of block cipher.

NIST:
Cipher key-size Modulus size
≤ 64 bits 512 bits.

Page 23

≤ 64 bits 512 bits.
80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits

� High security ⇒ very large moduli.

Not necessary with Elliptic Curve Cryptography.

