The RSA Trapdoor Permutation

Dan Boneh Stanford University

Review: arithmetic mod composites

- > Let $N = p \cdot q$ where p,q are prime
- > Notation: $Z_N = \{0, 1, 2, ..., N-1\}$

 $(Z_N)^* = \{$ invertible elements in $Z_N \}$

▹ Facts:

- $x \in Z_N$ is in $(Z_N)^* \iff gcd(x,N) = 1$
- Number of elements in $(Z_N)^*$ is $\phi(N) = (p-1)(q-1)$
- Euler's thm:

$$\forall x \in (Z_N)^*$$
 : $x^{\phi(N)} = 1$

Review: trapdoor permutations

Three algorithms: (G, F, F⁻¹)

- > G: outputs pk, sk pk defines a function $F(pk, \cdot): X \to X$
- > F(pk, x): evaluates the function at x
- $> F^{-1}(sk, y)$: inverts the function at y using sk

Secure trapdoor permutation (review): the func. F(pk, ·) is one-way without the trapdoor sk.

The RSA trapdoor permutation

First published:

 Scientific American, Aug. 1977. (after some censorship entanglements)

Currently the "work horse" of Internet security:

- Most Public Key Infrastructure (PKI) products.
- SSL/TLS: Certificates and key-exchange.
- Secure e-mail and file systems.

The RSA trapdoor permutation

> alg G: N=pq.
$$N \approx 1024$$
 bits. p,q ≈ 512 bits.
e - encryption exponent. gcd(e, $\varphi(N)$) = 1.

> alg F: $RSA(M) = M^e \in Z_N^*$ where $M \in Z_N^*$

Trapdoor:
d - decryption exponent.
Where $e \cdot d = 1 \pmod{\phi(N)}$ alg F⁻¹:
RSA(M)^d = M^{ed} = M^{k\phi(N)+1} = (M^{\phi(N)})^k·M = M

> (n,e,t,ε) -RSA Assumption: For all t-time algs. A: Pr[A(N,e,x) = x^{1/e} (N) : $p,q \in \mathbb{R}$ n-bit primes, $N \leftarrow pq, x \in \mathbb{Z}_N^*$] < ε

Textbook RSA is insecure

- Textbook RSA encryption:
 - public key: (N,e) Encrypt: C = M^e (mod N)
 - private key: d Decrypt: C^d = M (mod N)
 - $(\mathbf{M} \in \mathbf{Z}_{\mathsf{N}}^{\star})$
- Completely insecure cryptosystem:
 - Does not satisfy basic definitions of security.
 - Many attacks exist.

The RSA trapdoor permutation is not a cryptosystem !

A simple attack on textbook RSA

> Session-key K is 64 bits. View $K \in \{0, ..., 2^{64}\}$ Eavesdropper sees: $C = K^e \pmod{N}$.

> Suppose $K = K_1 \cdot K_2$ where $K_1, K_2 < 2^{34}$. (prob. $\approx 20\%$) Then: $C/K_1^e = K_2^e$ (mod N)

> Build table: $C/1^{e}$, $C/2^{e}$, $C/3^{e}$, ..., $C/2^{34e}$. time: 2^{34} For $K_2 = 0, ..., 2^{34}$ test if K_2^{e} is in table. time: $2^{34} \cdot 34$

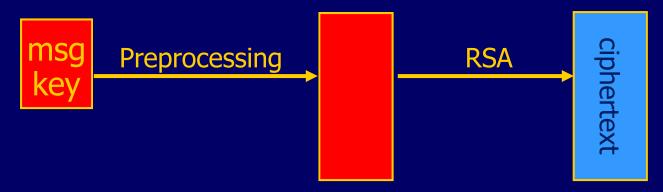
> Attack time: ≈2⁴⁰ << 2⁶⁴

RSA pub-key encryption (ISO std)

- > (E_s, D_s): symmetric encryption scheme, AE-secure H: $Z_N \rightarrow K$ where K is key space of (E_s, D_s)
- G: generate RSA params: pk = (N,e), sk = (N,d)
- E(pk, m): (1) choose random x in Z_N
 (2) $u \leftarrow RSA(x) = x^e$, $k \leftarrow H(x)$ (3) output (u, E_s(k,m))
- > D(sk, (u, c)): output $D_s(H(RSA^{-1}(u)), c)$

RSA encryption in practice

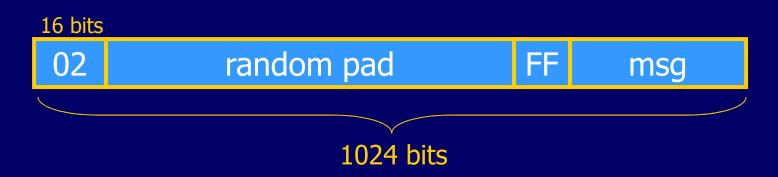
- > Never use textbook RSA.
- RSA in practice (since ISO standard is not often used) :



- > Main question:
 - How should the preprocessing be done?
 - Can we argue about security of resulting system?

PKCS1 V1.5

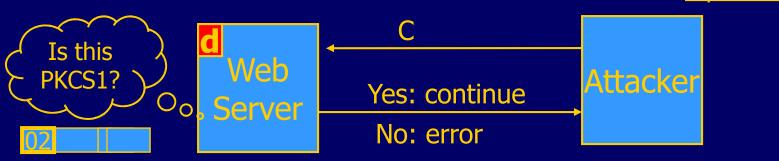
> PKCS1 mode 2: (encryption)



- > Resulting value is RSA encrypted.
- > Widely deployed in web servers and browsers.
- No security analysis !!

Attack on PKCS1

- > Bleichenbacher 98. Chosen-ciphertext attack.
- > PKCS1 used in SSL:



 \Rightarrow attacker can test if 16 MSBs of plaintext = '02'.

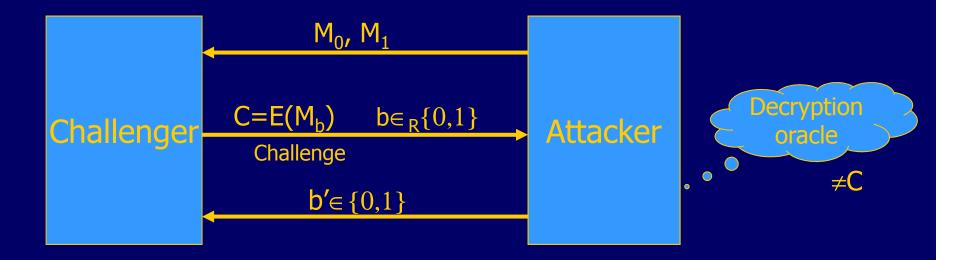
> Attack: to decrypt a given ciphertext C do:

- Pick $r \in Z_N$. Compute $C' = r^{e_1}C = (r \cdot PKCS1(M))^e$.
- Send C' to web server and use response.

C= ciphertext

Review: chosen CT security (ccs)

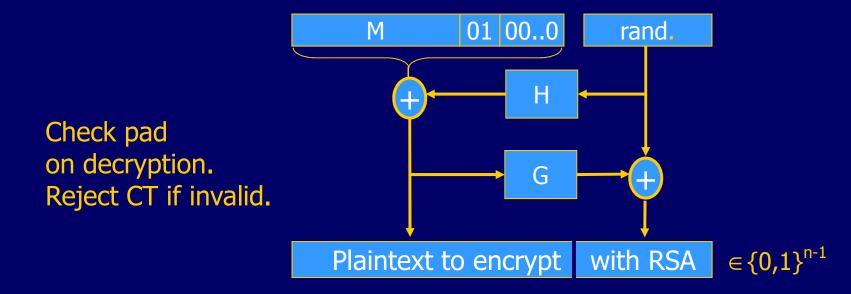
 No efficient attacker can win the following game: (with non-negligible advantage)



Attacker wins if b=b'

PKCS1 V2.0 - OAEP

> New preprocessing function: OAEP [BR94]



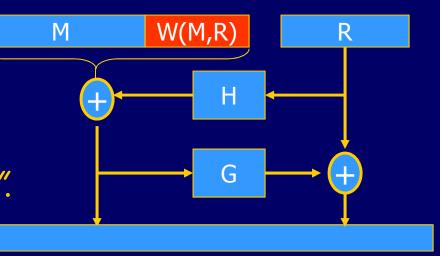
➤ Thm [FOPS'01]: RSA is trap-door permutation ⇒ RSA-OAEP is CCS when H,G are "random oracles".

> In practice: use SHA-256 for H and G.

OAEP Improvements

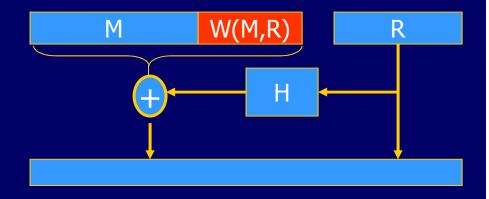
> OAEP+: [Shoup'01]

∀ trap-door permutation F
 F-OAEP+ is CCS when
 H,G,W are "random oracles".



> SAEP+: [B'01]

RSA trap-door perm \Rightarrow RSA-SAEP+ is CCS when H,W are "random oracle".



Subtleties in implementing OAEP [M '00]

Problem: timing information leaks type of error.
 Attacker can decrypt any ciphertext C.
 Lesson: Don't implement RSA-OAEP yourself ...

Part II: Is RSA a One-Way Function?

Is RSA a one-way permutation?

To invert the RSA one-way function (without d) attacker must compute:

$$M \quad from \quad C = M^e \pmod{N}.$$

- > How hard is computing e'th roots modulo N ??
- Best known algorithm:
 - Step 1: factor N. (hard)
 - Step 2: Find e'th roots modulo p and q. (easy)

Shortcuts?

Must one factor N in order to compute e'th roots? Exists shortcut for breaking RSA without factoring?

To prove no shortcut exists show a reduction:

- Efficient algorithm for e'th roots mod N
 ⇒ efficient algorithm for factoring N.
- Oldest problem in public key cryptography.
- Evidence no reduction exists: (BV'98)
 - "Algebraic" reduction \Rightarrow factoring is easy.
 - Unlike Diffie-Hellman (Maurer'94).

Improving RSA's performance

- To speed up RSA decryption use small private key d.
 C^d = M (mod N)
 - Wiener 87: if $d < N^{0.25}$ then RSA is insecure.
 - BD'98: if $d < N^{0.292}$ then RSA is insecure (open: $d < N^{0.5}$)
 - <u>Insecure</u>: priv. key d can be found from (N,e).
 - Small d should <u>never</u> be used.

Wiener's attack

> Recall: e·d = 1 (mod $\varphi(N)$)
⇒ ∃ k∈Z: e·d = k· $\varphi(N)$ + 1
⇒ $\left|\frac{e}{\varphi(N)} - \frac{k}{d}\right| \leq \frac{1}{d\varphi(N)}$ $\varphi(N) = N-p-q+1 \Rightarrow |N-\varphi(N)| \leq p+q \leq 3\sqrt{N}$ $d \leq N^{0.25}/3 \Rightarrow \left|\frac{e}{N} - \frac{k}{d}\right| \leq \frac{1}{2d^2}$

Continued fraction expansion of e/N gives k/d. e·d = 1 (mod k) \Rightarrow gcd(d,k)=1

RSA With Low public exponent

- To speed up RSA encryption (and sig. verify) use a small e. C = M^e (mod N)
- > Minimal value: e=3 (gcd(e, $\phi(N)$) = 1)
- Recommended value: e=65537=2¹⁶+1 Encryption: 17 mod. multiplies.
- > Several weak attacks. Non known on RSA-OAEP.
- > <u>Asymmetry of RSA:</u> fast enc. / slow dec.
 - ElGamal: approx. same time for both.

Implementation attacks

- > Attack the implementation of RSA.
- Timing attack: (Kocher 97) The time it takes to compute C^d (mod N) can expose d.
- Power attack: (Kocher 99) The power consumption of a smartcard while it is computing C^d (mod N) can expose d.
- Faults attack: (BDL 97) A computer error during C^d (mod N) can expose d. OpenSSL defense: check output. 5% slowdown.

Key lengths

Security of public key system should be comparable to security of block cipher. NIST:

> <u>Cipher key-size</u> ≤ 64 bits 80 bits 128 bits 256 bits (AES)

<u>Modulus size</u> 512 bits. 1024 bits 3072 bits. **15360** bits

High security ⇒ very large moduli. Not necessary with Elliptic Curve Cryptography.