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Review: arithmetic mod composites

� Let    N = p⋅q where   p,q are prime

� Notation: ZN = {0,1,2,…,N-1}

(ZN)* =  {invertible elements in ZN}

� Facts:� Facts:

• x ∈ ZN  is in  (ZN)*       ⇔ gcd(x,N) = 1

• Number of elements in  (ZN)*  is    ϕ(N) = (p-1)(q-1)

� Euler’s thm:         ∀ x∈ (ZN)*    :    x
ϕ(N)  

=  1     
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Review: trapdoor permutations

Three algorithms:   (G, F, F-1)

� G:    outputs   pk,  sk

pk defines a function  F(pk, ⋅): X → X

� F(pk, x):   evaluates the function at  x

� F
-1

(sk, y):  inverts the function at y using sk

Secure trapdoor permutation  (review):   

the func. F(pk, ⋅) is one-way without the trapdoor sk.
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The RSA trapdoor permutation

� First published: 

• Scientific American, Aug. 1977.
(after some censorship entanglements)
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� Currently the “work horse” of Internet security:

• Most Public Key Infrastructure (PKI) products.

• SSL/TLS:  Certificates and key-exchange.

• Secure e-mail and file systems.



The RSA trapdoor permutation

� alg G: N=pq.    N ≈1024 bits.    p,q ≈512 bits.
e – encryption exponent.    gcd(e, ϕ(N) ) = 1 .

� alg F: RSA(M) = Me ∈ZN
* where  M∈ZN

*
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� Trapdoor: d – decryption exponent.

Where    e⋅d = 1   (mod ϕ(N) )

� alg F-1: RSA(M)
d
= Med

= Mkϕ(N)+1 = (Mϕ(N))
k
⋅M = M

� (n,e,t,ε)-RSA Assumption:    For all t-time algs. A:

Pr[ A(N,e,x) = x
1/e

(N)   :                ] < εp,q ← n-bit primes,

N←pq,   x←ZN
*

R

R



Textbook RSA is insecure

� Textbook RSA encryption:

• public key:   (N,e) Encrypt:   C = Me (mod N)

• private key:  d Decrypt:   Cd = M (mod N)

(M ∈∈∈∈ ZN
* )
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� Completely insecure cryptosystem:

• Does not satisfy basic definitions of security.

• Many attacks exist.

� The RSA trapdoor permutation is not a cryptosystem !



A simple attack on textbook RSA

� Session-key  K is 64 bits.     View   K ∈ {0,…,264}
Eavesdropper sees:    C = Ke (mod N) .

Web
Browser

Web
Server

CLIENT HELLO

SERVER HELLO (e,N) d

C=RSA(K)

Random
session-
key K
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� Session-key  K is 64 bits.     View   K ∈ {0,…,2 }
Eavesdropper sees:    C = Ke (mod N) .

� Suppose   K = K1⋅⋅⋅⋅K2 where   K1, K2 < 234 .   (prob. ≈20%)

Then:    C/K1
e = K2

e (mod N)

� Build table:   C/1e, C/2e, C/3e, …, C/234e .   time:  234

For  K2 = 0,…, 234 test if  K2
e is in table.   time: 234⋅34

� Attack time:   ≈240  << 264



RSA pub-key encryption   (ISO std)

� (Es, Ds):   symmetric encryption scheme,  AE-secure

H:  ZN → K   where  K is key space of (Es,Ds)

� G:    generate RSA params:  pk = (N,e),    sk = (N,d)

� E(pk, m): (1) choose random x in ZN

(2)  u ← RSA(x) = xe ,   k ← H(x)

(3) output    (u ,  Es(k,m) )

� D(sk,  (u, c) ):    output  Ds(  H(RSA-1 (u)) ,  c)
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RSA encryption in practice

� Never use textbook RSA.

� RSA in practice   (since ISO standard is not often used) :

msg Preprocessing

cip
h
e
rte

x
t

RSA
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� Main question:
• How should the preprocessing be done?
• Can we argue about security of resulting system?

msg
key

Preprocessing

cip
h
e
rte

x
t

RSA



PKCS1 V1.5

� PKCS1 mode 2: (encryption)

02 random pad FF msg

16 bits
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� Resulting value is RSA encrypted.

� Widely deployed in web servers and browsers.

� No security analysis !!

1024 bits



Attack on PKCS1

� Bleichenbacher 98.  Chosen-ciphertext attack.

� PKCS1 used in SSL:

AttackerWeb
Server

dIs this
PKCS1?

ciphertextC=

C

Yes: continue
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⇒ attacker can test if 16 MSBs of plaintext = ’02’.

� Attack:  to decrypt a given ciphertext C do:

• Pick  r ∈ ZN.     Compute  C’ = re⋅C   = (r ⋅ PKCS1(M))
e
.

• Send  C’  to web server and use response.

Attacker
Server

PKCS1?
Yes: continue

No: error02



Review: chosen CT security   (CCS)

� No efficient attacker can win the following game:
(with non-negligible advantage)

M0, M1

Decryption 
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AttackerChallenger

b’∈{0,1}

Attacker wins if    b=b’

C=E(Mb)     b∈R{0,1}
Challenge

Decryption 
oracle

≠C



PKCS1 V2.0 - OAEP

� New preprocessing function:  OAEP   [BR94]

H+

rand.M 01 00..0

Check pad
on decryption.
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� Thm [FOPS’01] : RSA is trap-door permutation  ⇒
RSA-OAEP is CCS when  H,G  are “random oracles”.

� In practice:  use SHA-256 for H and G.

G +

Plaintext to encrypt with RSA

on decryption.
Reject CT if invalid.

∈{0,1}n-1



OAEP Improvements

�OAEP+:   [Shoup’01]

∀ trap-door permutation F 
F-OAEP+ is CCS when  
H,G,W  are “random oracles”.

R

H+

G +

M W(M,R)
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�SAEP+:  [B’01]

RSA trap-door perm ⇒

RSA-SAEP+ is CCS when 

H,W  are “random oracle”.

R

H+

M W(M,R)



Subtleties in implementing OAEP    [M ’00]

OAEP-decrypt(C)  {

error = 0;

if  ( RSA
-1

(C) > 2
n-1 )

{ error =1;  goto exit; }
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if  ( pad(OAEP
-1

(RSA
-1

(C))) != “01000” )

{ error = 1;  goto exit; }}

� Problem: timing information leaks type of error.

⇒ Attacker can decrypt any ciphertext  C.

� Lesson:  Don’t implement RSA-OAEP yourself …



Part II:
Is RSA a One-Way Function?



Is RSA a one-way permutation?

� To invert the RSA one-way function (without d) attacker 
must compute:

M    from     C = Me (mod N).
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� How hard is computing  e’th roots modulo N ??

� Best known algorithm:   
• Step 1:  factor  N.     (hard)
• Step 2:  Find  e’th  roots modulo  p  and  q.     (easy)



Shortcuts?

� Must one factor N in order to compute e’th roots?

Exists shortcut for breaking RSA without factoring?

� To prove no shortcut exists show a reduction:

• Efficient algorithm for e’th roots mod N
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• Efficient algorithm for e’th roots mod N

⇒ efficient algorithm for factoring  N.

• Oldest problem in public key cryptography.

� Evidence no reduction exists: (BV’98)

• “Algebraic” reduction  ⇒ factoring is easy.

• Unlike Diffie-Hellman (Maurer’94).



Improving RSA’s performance

� To speed up RSA decryption use 

small private key  d. Cd = M  (mod N)

• Wiener87: if   d < N0.25 then RSA is insecure.

• BD’98: if   d < N0.292 then RSA is insecure
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• BD’98: if   d < N0.292 then RSA is insecure

(open:  d < N0.5 )

• Insecure: priv. key  d  can be found from  (N,e).

• Small   d   should never be used.



Wiener’s attack

� Recall: e⋅d = 1  (mod ϕ(N) )

⇒ ∃ k∈Z :     e⋅d = k⋅ϕ(N) + 1 

⇒
e

ϕ(N) 
k
d 

- ≤ 1
dϕ(N) 
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ϕ(N) = N-p-q+1    ⇒ |N- ϕ(N)| ≤ p+q ≤ 3√N

d ≤ N0.25/3    ⇒

Continued fraction expansion of  e/N  gives  k/d.

e⋅d = 1 (mod k)   ⇒ gcd(d,k)=1

e
N 

k
d 

- ≤ 1
2d2



RSA With Low public exponent

� To speed up RSA encryption (and sig. verify) 

use a small   e. C = Me (mod N)

� Minimal value:   e=3 ( gcd(e, ϕ(N) ) = 1)

Recommended value:   e=65537=216+1
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� Recommended value:   e=65537=216+1

Encryption:  17 mod. multiplies.

� Several weak attacks.   Non known on RSA-OAEP.

� Asymmetry of RSA: fast enc. / slow dec.

• ElGamal:   approx. same time for both.



Implementation attacks

� Attack the implementation of RSA.

� Timing attack:  (Kocher 97)
The time it takes to compute   Cd (mod N)
can expose   d.
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� Power attack:  (Kocher 99)
The power consumption of a smartcard while 
it is computing  Cd (mod N)   can expose  d.

� Faults attack:  (BDL 97)
A computer error during   Cd (mod N)  
can expose   d.   

OpenSSL defense:  check output. 5% slowdown.



Key lengths

� Security of public key system should be 
comparable to security of block cipher.

NIST:
Cipher key-size Modulus size
≤ 64 bits 512 bits.
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≤ 64 bits 512 bits.
80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits 

� High security  ⇒ very large moduli.

Not necessary with Elliptic Curve Cryptography.


