## Assignment \#4

Due: Wed., Mar. 15, 2023, by Gradescope (each answer on a separate page).

Problem 1. Let's explore why in the RSA trapdoor permutation every party has to be assigned a different modulus $n=p q$. Suppose we try to use the same modulus $n=p q$ for everyone. Every party is assigned a public exponent $e_{i} \in \mathbb{Z}$ and a private exponent $d_{i} \in \mathbb{Z}$ such that $e_{i} \cdot d_{i}=1 \bmod \varphi(n)$. At first this appears to work fine: to sign a message $m \in \mathcal{M}$, Alice would publish the signature $\sigma_{\mathrm{a}} \leftarrow H(m)^{d_{\mathrm{a}}} \in \mathbb{Z}_{n}$ where $H: \mathcal{M} \rightarrow \mathbb{Z}_{n}^{*}$ is a hash function. Similarly, Bob would publish the signature $\sigma_{\mathrm{b}} \leftarrow H(m)^{d_{\mathrm{b}}} \in \mathbb{Z}_{n}$. Since Alice is the only one who knows $d_{\mathrm{a}} \in \mathbb{Z}$ and Bob is the only one who knows $d_{\mathrm{b}} \in \mathbb{Z}$, this seems fine.
Let's show that this is completely insecure: Bob can use his secret key $d_{\mathrm{b}}$ to sign messages on behalf of Alice.
a. Show that Bob can use his public-private key pair $\left(e_{\mathrm{b}}, d_{\mathrm{b}}\right)$ to obtain a multiple of $\varphi(n)$. Let us denote that integer by $V$.
b. Now, suppose Bob knows Alice's public key $e_{\mathrm{a}}$. Show that for any message $m \in \mathcal{M}$, Bob can compute $\sigma \leftarrow H(m)^{1 / e_{a}} \in \mathbb{Z}_{n}$. In other words, Bob can invert Alice's trapdoor permutation and obtain her signature on $m$.
Hint: First, suppose $e_{\mathrm{a}}$ is relatively prime to $V$. Then Bob can find an integer $d$ such that $d \cdot e_{\mathrm{a}}=1 \bmod V$. Show that $d$ can be used to efficiently compute $\sigma$. Next, show how to make your algorithm work even if $e_{\mathrm{a}}$ is not relatively prime to $V$.

Note: In fact, one can show that Bob can completely factor the global modulus $n$.

Problem 2. Consider again the RSA-FDH signature scheme. The public key is a pair ( $N, e$ ) where $N$ is an RSA modulus, and a signature on a message $m \in \mathcal{M}$ is defined as $\sigma:=$ $H(m)^{1 / e} \in \mathbb{Z}_{N}$, where $H: \mathcal{M} \rightarrow \mathbb{Z}_{N}$ is a hash function. Suppose the adversary could find three messages $m_{1}, m_{2}, m_{3} \in \mathcal{M}$ such that $H\left(m_{1}\right) \cdot H\left(m_{2}\right)=H\left(m_{3}\right)$ in $\mathbb{Z}_{N}$. Show that the resulting RSA-FDH signature scheme is no longer existentially unforgeable under a chosen message attack.

Problem 3. A commitment scheme enables Alice to commit a value $x$ to Bob. The scheme is hiding if the commitment does not reveal to Bob any information about the committed value $x$. At a later time Alice may open the commitment and convince Bob that the committed value is $x$. The commitment is binding if Alice cannot convince Bob that the committed value is some $x^{\prime} \neq x$. Here is an example commitment scheme:

Public values: A group $\mathbb{G}$ of prime order $q$ and two generators $g, h \in \mathbb{G}$.
Commitment: To commit to an element $x \in \mathbb{Z}_{q}$ Alice does the following: (1) she chooses a random $r \in \mathbb{Z}_{q}$, (2) she computes $b=g^{x} \cdot h^{r} \in \mathbb{G}$, and (3) she sends $b$ to Bob as her commitment to $x$.
Open: To open the commitment Alice sends $(x, r)$ to Bob. Bob verifies that $b=g^{x} \cdot h^{r}$.
Show that this scheme is hiding and binding.
a. To prove the hiding property show that $b$ reveals no information about $x$. In other words, show that given $b$, the committed value can be any element $x^{\prime}$ in $\mathbb{Z}_{q}$. Hint: show that for any $x^{\prime} \in \mathbb{Z}_{q}$ there exists a unique $r^{\prime} \in \mathbb{Z}_{q}$ so that $b=g^{x^{\prime}} h^{r^{\prime}}$.
b. To prove the binding property show that if Alice can find a commitment $b$ and two openings $(x, r)$ and $\left(x^{\prime}, r^{\prime}\right)$, where $x \neq x^{\prime}$, then Alice can compute the discrete log of $h$ base $g$. Conclude that if the discrete $\log$ problem is hard in $\mathbb{G}$, and $h$ is chosen uniformly in $\mathbb{G}$, then the commitment scheme must be binding.
Hint: use the fact that $b=g^{x} h^{r}=g^{x^{\prime}} h^{r^{\prime}}$, where Alice knows $x, r, x^{\prime}, r^{\prime}$, to find the discrete $\log$ of $h$ base $g$.
c. Show that the commitment is additively homomorphic: given a commitment to $x \in \mathbb{Z}_{q}$ and a commitment to $y \in \mathbb{Z}_{q}$, Bob can construct a commitment to $z=a x+b y$, for any $a, b \in \mathbb{Z}_{q}$ of his choice.

Problem 4. Time-space tradeoff. Let $f: X \rightarrow X$ be a one-way permutation (i.e., a one-to-one function on $X$ ). Show that one can build a table $T$ of size $2 B$ elements of $X(B \ll|X|)$ that enables an attacker to invert $f$ in time $O(|X| / B)$. More precisely, construct an $O(|X| / B)$-time deterministic algorithm $\mathcal{A}$ that takes as input the table $T$ and a $y \in X$, and outputs an $x \in X$ satisfying $f(x)=y$. This result suggests that the more memory the attacker has, the easier it becomes to invert functions.
Hint: choose a random point $z \in X$ and compute the sequence

$$
z_{0}:=z, \quad z_{1}:=f(z), \quad z_{2}:=f(f(z)), \quad z_{3}:=f(f(f(z))), \quad \ldots
$$

Since $f$ is a permutation, this sequence must come back to $z$ at some point (i.e. there exists some $j>0$ such that $z_{j}=z$ ). We call the resulting sequence $\left(z_{0}, z_{1}, \ldots, z_{j}\right)$ an $f$-cycle. Let $t:=\lceil|X| / B\rceil$. Try storing $\left(z_{0}, z_{t}, z_{2 t}, z_{3 t}, \ldots\right)$ in memory. Use this table (or perhaps, several such tables) to invert an input $y \in X$ in time $O(t)$.
Discussion: Time-space tradeoffs of this nature can be used to attack unsalted hashed passwords, as discussed in class. Time-space tradeoffs also exist for general one-way functions (not just permutations), but their performance is not as good as your time-space
tradeoff above. These algorithms are called Hellman tables and discussed in Section 18.7 in the book.

Problem 5. In the lecture on identification protocols we saw a protocol called $\mathrm{S} / \mathrm{key}$ that uses an iterated one-way function. In this question we explore the security of iterated one-way functions.
a. Let's show that the iteration of a one-way function need not be one-way. To do so, let $f: \mathcal{X} \rightarrow \mathcal{X}$ be a one-way function, where $0 \in \mathcal{X}$. Let $\hat{f}: \mathcal{X}^{2} \rightarrow \mathcal{X}^{2}$ be defined as:

$$
\hat{f}(x, y)= \begin{cases}(0,0) & \text { if } y=0 \\ (f(x), 0) & \text { otherwise }\end{cases}
$$

Show that $\hat{f}$ is one-way, but $\hat{f}^{(2)}(x, y):=\hat{f}(\hat{f}(x, y))$ is not.
b. Let's show that the iteration of a one-way permutation is also one-way (recall that a permutation is a one-to-one function). Suppose $f: \mathcal{X} \rightarrow \mathcal{X}$ is a one-way permutation. Show that $f^{(2)}(x):=f(f(x))$ is also one-way. As usual, prove the contrapositive.
c. Explain why your proof from part (b) does not apply to a one-way function. Where does the proof fail?

