
Signing a Linear Subspace:
Signature Schemes for Network Coding

Dan Boneh1?, David Freeman1?? Jonathan Katz2? ? ?, and Brent Waters3†

1 Stanford University, {dabo,dfreeman}@cs.stanford.edu
2 University of Maryland, jkatz@cs.umd.edu

3 University of Texas at Austin, bwaters@crl.sri.com.

Abstract. Network coding offers increased throughput and improved robustness to random faults in
completely decentralized networks. In contrast to traditional routing schemes, however, network coding
requires intermediate nodes to modify data packets en route; for this reason, standard signature schemes
are inapplicable and it is a challenge to provide resilience to tampering by malicious nodes.

Here, we propose two signature schemes that can be used in conjunction with network coding to prevent
malicious modification of data. In particular, our schemes can be viewed as signing linear subspaces
in the sense that a signature σ on V authenticates exactly those vectors in V . Our first scheme is
homomorphic and has better performance, with both public key size and per-packet overhead being
constant. Our second scheme does not rely on random oracles and uses weaker assumptions.

We also prove a lower bound on the length of signatures for linear subspaces showing that both of our
schemes are essentially optimal in this regard.

1 Introduction

Network coding [1, 25] refers to a general class of routing mechanisms where, in contrast to tra-
ditional “store-and-forward” routing, intermediate nodes modify data packets in transit. Network
coding has been shown to offer a number of advantages with respect to traditional routing, the most
well-known of which is the possibility of increased throughput in certain network topologies (see,
e.g., [21] for measurements of the improvement network coding gives even for unicast traffic). It has
also been suggested as a means of improving robustness against random network failures since, as
with erasure codes [7], the destination can recover the original data (with high probability) once it
has received sufficiently many correct packets, even if a large fraction of packets are lost.

Because of these advantages, network coding has been proposed for applications in wireless
and/or ad-hoc networks, where communication is at a premium and centralized control may be
unavailable; it has also been suggested as an efficient means for content distribution in peer-to-
peer networks [24], and for improving the performance of large-scale data dissemination over the
Internet [12].

A major concern in systems that use network coding is to provide protection against malicious
modification of packets (i.e., “pollution attacks”) by Byzantine nodes in the network; see [14, 23] for
? Supported by DARPA IAMANET, NSF, and the Packard Foundation.

?? Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.
? ? ? Supported by NSF CAREER award #0447075, NSF Trusted Computing grant #0627306, the U.S. DoD/ARO

MURI program, and the US Army Research Laboratory and the UK Ministry of Defence under agreement number
W911NF-06-3-0001.

† Supported by NSF CNS-0749931, CNS-0524252, CNS-0716199; the U.S. Army Research Office under the CyberTA
Grant No. W911NF-06-1-0316; and the U.S. Department of Homeland Security under Grant Award Number 2006-
CS-001-000001. Portions of this research were conducted while the author was at SRI International.

two recent surveys and Section 2.2 for a more complete discussion of previous work. The problem
is particularly acute because errors introduced into even a single packet can propagate and pollute
multiple packets making their way to the destination; this is a consequence of the processing that
honest nodes, downstream of any corrupted packets, apply to all incoming packets.

We propose two signature schemes that can be used to provide cryptographic protection against
pollution attacks even when the adversary can corrupt an arbitrary number of nodes in the network,
eavesdrop on all network traffic, and insert or modify an arbitrary number of packets. Of course,
the destination cannot possibly recover the file unless it receives a minimum number of uncorrupted
packets; as long as this is the case, however, our schemes ensure that the destination can filter out
any corrupted packets and hence recover the correct file. As our signatures are publicly verifiable,
intermediate nodes could discard corrupted packets as well (though whether this is actually done will
depend on the computational resources of the intermediate nodes). Our first scheme is particularly
efficient, with both public key size and per-packet overhead being constant. We defer a more detailed
discussion of our schemes, and their advantages relative to prior work, to Section 2.3.

Our schemes can be viewed as signing linear subspaces in the sense that a signature σ on
the subspace V authenticates exactly those vectors in V . (The application to network coding
will become clear after the following section.) In addition to our two schemes, we also prove a
lower bound on the signature length for any scheme for signing linear subspaces (under some mild
restrictions), showing that our constructions are essentially optimal in this regard.

Outline of the paper. We do not assume any background in network coding, and so provide a
quick overview of the relevant details in Section 2.1. In Section 2.2 we discuss prior work addressing
adversarial behavior in the context of network coding, and we describe the advantages of our
schemes (and compare them to prior work) in Section 2.3. In Section 3 we introduce appropriate
definitions of security for our setting and give relevant mathematical background. Sections 4 and 5
describe our constructions, and in Section 6 we prove our lower bound.

2 Background

2.1 Linear Network Coding

In a linear network coding scheme [25] (the only type with which we will be concerned), a file to
be transmitted is viewed as an ordered sequence of n-dimensional vectors v̄1, . . . , v̄m ∈ Fn

p , where
p is prime. We will sometimes refer to individual vectors as blocks of the file. Before transmission,
the source node creates the m augmented vectors v1, . . . ,vm given by:

vi = (—v̄i—,

m︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ Fn+m
p ;

i.e., each original vector v̄i is appended with the vector of length m containing a single ‘1’ in the
ith position. These augmented vectors are then sent by the source as packets in the network. Since
this introduces Θ(m2) overhead per file, one typically chooses m� n.

Each node in the network processes packets as follows. Upon receiving packets (i.e., vectors)
w1, . . . ,w` ∈ Fn+m

p on its ` incoming communication edges, a node computes the packet (vector)
w =

∑`
j=1 αi,jwj , where each αi,j ∈ Fp. The resulting vector w is then transmitted on the node’s

outgoing edges. That is, each node transmits a linear combination of the packets it receives. Thus

2

in a fault-free execution of the scheme, all packets transmitted on any communication link in the
network are linear combinations of the original (augmented) file vectors v1, . . . ,vm.

The weights αi,j used by the ith node in the network can be established by a central authority.
More usefully (and more interestingly), however, these values can also be chosen randomly and
independently by each node in a completely decentralized fashion. (In the latter case, the scheme
is sometimes referred to as “random network coding”.) Although carefully designed codes can
potentially have better performance, it has been shown that random network coding does almost
as well with high probability [9, 15, 17].

There may be multiple destination nodes (i.e., receivers) who wish to obtain the original file
from the source. When any such node receives m linearly independent vectors w1, . . . ,wm, it can
recover the original file as follows: For a received vector wi, let wL

i denote the left-most n positions
of the vector, and let wR

i denote the right-most m positions. The receiver first computes an m×m
matrix G such that

G =

—wR
1 —
...

—wR
m—


−1

.

(The matrix on the right-hand side is invertible as long as all the received vectors are correct.) The
original file v̄1, . . . , v̄m is then given by—v̄1—

...
—v̄m—

 = G ·

—wL
1—
...

—wL
m—

 .

We stress that the receiver need not be aware of the weights {αi,j} used by any intermediate node in
the network in order to recover the file. On the other hand, if the weights used by the intermediate
nodes are all known to the receiver (and the receiver is aware of the network topology) then the
matrix G can be computed in advance and, in fact, the scheme can be run on the original file vectors
v̄1, . . . , v̄m rather than on the augmented vectors v1, . . . ,vm. In our work, however, we will assume
that augmented vectors are used; in fact, for security purposes, we will see that these augmented
vectors are necessary.

2.2 Dealing with Adversarial Behavior

Network coding can offer resilience to random packet loss since the receiver can reconstruct the
original file from any set of m correctly formed, linearly independent vectors. (Notice the similarity
with linear erasure codes introduced in other contexts, e.g., [7].) However, the in-network processing
done by the nodes makes the basic network coding scheme extremely susceptible to malicious errors
introduced by even a single intermediate node in the network. For starters, this is because the basic
network coding scheme offers no means of isolating the fault: if one of the vectors wi received
at the destination is incorrect, then that error will be “spread” across (potentially) every block
v̄1, . . . , v̄m of the reconstructed file. Furthermore, a single error introduced by one malicious node
will be propagated by every node further downstream. Thus, even a faulty transmission on a single
edge (say, due to a single corrupted node) will eventually cause almost all vectors being forwarded
in the network to be incorrect, and will thus prevent reconstruction of even a portion of the file.

3

It is worth mentioning two trivial approaches that do not solve the problem. The source cannot
simply sign the packets it releases into the network using a standard signature scheme, since the
packets received by the receiver are likely to be different from those issued by the sender. Signing
the entire file does not work either: although this would ensure that the receiver never accepts
an incorrect file, there is no efficient way for the receiver to recover the correct file. (Since the
receiver cannot distinguish correct packets from corrupt packets a priori, it is forced to apply the
reconstruction procedure from Section 2.1 to all subsets of received vectors of size m.)

We now survey other techniques for combatting data pollution when network coding is used
(see [23] for further discussion). For the purposes of our work, we separate existing techniques into
two categories: information-theoretic and computational.

Information-theoretic approaches. Information-theoretic methods for enabling recovery from
malicious faults are possible by introducing redundancy into the original packets transmitted by
the sender [16, 18, 19]. Such techniques have the advantage of not relying on any computational
assumptions, but are limited to offering security only against a relatively limited class of adversaries:
rather than limit the adversary’s computational power, these constructions place limitations on the
number of nodes the adversary can corrupt, the number of packets that can be modified, and/or
the number of links on which the adversary can eavesdrop. Moreover, the communication overhead
introduced by these schemes is significant.

Cryptographic approaches. Existing cryptographic schemes (i.e., those that protect only against
a computationally bounded adversary) all work by providing a way for honest nodes to verify
authenticity of individual packets. (Once again we stress that this can not be achieved in our
setting using standard signatures, since packets are modified in transit.) Cryptographic schemes can
potentially offer resilience against an adversary who eavesdrops on the entire network and controls
an arbitrary fraction of malicious nodes, as long as the destination node receives m correctly formed
and linearly independent vectors. They also allow the receiver to recover gracefully when fewer than
m legitimate vectors are received; for example, if the destination receives k correctly formed vectors
spanning the subspace defined by the first k blocks of the file, then the receiver can at least recover a
portion of the original file. Cryptographic schemes have the additional advantage that intermediate
nodes in the network can verify correctness of individual packets, and hence reject ill-formed ones.

Although one could imagine using a symmetric-key approach, all existing work focuses on the
public-key setting where the sender has a public key known to all other nodes in the network. A
public-key scheme makes the most sense when the sender is multicasting files to many receivers in
the network (as is typically the situation when network coding is used), and furthermore enables
all intermediate nodes in the network to potentially verify authenticity of received packets.

Krohn et al. [24] (see also [13]) suggest homomorphic hashing for preventing pollution attacks.
In their scheme, the sender computes a hash hi = H(v̄i) of each block of the file; given x =
(h1, . . . , hm), anyone can check whether a packet w is a correctly formed linear combination of the
augmented vectors {vi}. Krohn et al. assume a reliable channel for distributing the hash values for a
given file, but it is not hard to show (see Section 5) that signing x using a standard signature scheme
also results in a secure solution. The drawback of this approach is that both the authentication
information x and the public keys are large: x has size O(km) and the public key has size O(kn),
where k is a cryptographic security parameter. (Thus either the public key or x has size at least
the square root of the file size.) Sending all of x with each packet introduces a large overhead; on

4

the other hand, if x is partitioned among multiple packets then intermediate nodes cannot verify
authenticity of the packets they receive.

Zhao et al. [28] propose a scheme where the sender computes some authentication information
x derived from a vector orthogonal to the space V = span({v1, . . . ,vm}); this authentication
information x is then signed by the sender (using a standard signature scheme). Unfortunately, this
scheme also has relatively poor performance: both x and the public keys have size O(k(n + m)).
Furthermore, the scheme can only be used for distributing a single file, after which the public key
must be refreshed. (Zhao et al. suggest some approaches for handling multiple files, but do not
prove security of any of these suggestions.) An additional drawback of both this scheme and the
one of Krohn et al. is that they both require the sender to know the entire file in advance, before
the authentication information can be computed.

Charles et al. [8] present a homomorphic signature scheme [20] based on the aggregate signa-
tures of Boneh et al. [5]. This scheme has the property that valid signatures σ1, . . . , σk on vectors
w1, . . . ,wk, respectively, can be combined, without knowledge of the signer’s secret key, to produce
a valid signature σ on any linear combination

∑
i αiwi. The scheme can only be used to sign a

single file, after which the public key must be refreshed; this restriction clearly limits the scheme’s
applicability. Public keys in this scheme have size O(k(m+n)), meaning that it will be impractical
to redistribute public keys over the network even if network coding is used for key distribution.
Charles et al. also do not formally prove security of their scheme.

2.3 Our Contributions

We start with clean definitions of the problem at hand and formally define what it means for a
signature scheme to be secure in our context. Roughly speaking, we consider signature schemes
that can be viewed as authenticating linear subspaces in the sense that a signature on the subspace
V can be used to authenticate exactly those vectors in V . Our security definition requires that no
adversary given a signature on a vector subspace V is able to forge a valid signature for any vector
not in V . (Actually, both our security definition and our constructions directly take into account
the distribution of multiple files using a single public key — in contrast to [8, 28] — and so the
formal definition is a bit more involved.)

We show two constructions meeting our definition. Our first scheme, called NCS1, is a homo-
morphic signature scheme, and has the advantage that signatures can be associated with individual
vectors rather than an entire subspace. (The signature on a linear subspace V can then be taken to
be the collection of signatures on a set of basis vectors for V .) Both the public key and per-vector
signatures in this scheme have constant size, making the scheme ideally suited for network coding.
This scheme also supports the transmission of streaming data; i.e., the source need not be aware of
the entire file before transmitting the first packet. Security of this scheme is proved based on the
computational Diffie-Hellman assumption in bilinear groups, in the random oracle model.

Our second construction, called NCS2, provides an instantiation of the scheme of Krohn et
al. [24] that is secure according to our definition. The primary advantage of this scheme is that
it can be proven secure based on a potentially weaker assumption (namely, the discrete logarithm
assumption) without random oracles. We also show how the scheme can be viewed as a more
efficient version of the scheme of Zhao et al. [28].

Finally, we prove a lower bound on the length of secure signatures for linear subspaces, under
some mild assumptions on the signature scheme. Specifically, we show (roughly speaking) that the

5

signature on any subspace V must have length proportional to dim(V). This shows that our two
constructions are essentially optimal in this regard. (Note that although our first scheme offers
constant size per-vector signatures, the signature on a subspace V consists of dim(V) per-vector
signatures and thus matches the lower bound.)

In contrast to information-theoretic schemes for achieving resilient network coding [18, 19], our
schemes are resilient to an arbitrary number of faults (as long as a minimum number of correct
packets reach the receiver) and have substantially lower communication overhead. On the other
hand, the computational requirements of our schemes are higher, and security is proven only relative
to unproven (but standard) cryptographic assumptions.

3 Definitions and Preliminaries

3.1 Signing a Linear Subspace

We abstract our problem, and seek to design a signature scheme that signs a subspace V of FN
p so

that any y ∈ V is accepted as valid and any y 6∈ V is rejected as invalid. We start by defining the
abstract interface provided by such a system and then define security.

As discussed previously, we want our scheme to be useful for the distribution of multiple files
using the same public key. As such, every file will be associated with an identifier id that is chosen
by the sender at the time the first packet associated with the file is transmitted.1 We then require
that every packet forwarded in the system is labeled with the appropriate identifier. (Adversarial
nodes, of course, can change the identifier any way they like.) The identifier provides a mechanism
for honest nodes, and especially the receiver, to distinguish packets associated with different files.

Definition 1. A network coding signature scheme is defined by a triple of probabilistic, polynomial-
time algorithms, (Setup, Sign, Verify) with the following functionality:

Setup(1k, N). Input: a security parameter 1k and an integer N , the length of a vector to be signed.
Output: a prime p, a public key PK, and a secret key SK.

Sign(SK, id, V). Input: a secret key SK, a file identifier id that is an element of a randomly
samplable set I, and an m-dimensional subspace V ⊂ FN

p , with 0 < m < N , described as a set
of basis vectors v1, . . . ,vm. Output: a signature σ.

Verify(PK, id,y, σ). Input: a public key PK, an identifier id ∈ I, a vector y ∈ FN
p , and a signature

σ. Output: 0 (reject) or 1 (accept).

We require that for each (p, PK, SK) output by Setup(1k, N), the following holds: for all subspaces
V ⊆ FN

p and for all id ∈ I, if σ := Sign(SK, id, V) then Verify(PK, id,y, σ) = 1 for all y ∈ V .

The signature σ output by Sign can be viewed a signature on the entire vector space V . However,
the case of homomorphic signatures is more precisely modeled by a definition in which the Sign
algorithm produces signatures σ1, . . . , σm on the basis vectors v1, . . . ,vm, and the collection of
these signatures constitutes a signature on V . This is encapsulated in the following definition and
the subsequent lemma.
1 One can think of this identifier as being equivalent to a filename. In both of our systems we require that identifiers

be unpredictable (they need not be random); this can be achieved easily by concatenating an arbitrary filename
with a random string.

6

Definition 2. A homomorphic network coding signature scheme is defined by a tuple of proba-
bilistic, polynomial-time algorithms (Setup,Sign,Combine,Verify) with the following functionality:

Setup(1k, N). Input: a security parameter 1k and an integer N , the length of a vector to be signed.
Output: a prime p, a public key PK, and a secret key SK.

Sign(SK, id,m,v). Input: a secret key SK, a file identifier id that is an element of a randomly
samplable set I, an integer m < N indicating the dimension of the space being signed, and a
vector v ∈ FN

p . Output: a signature σ.

Combine(PK, id, {(βi, σi)}`i=1). Input: a public key PK, a file identifier id, and ` pairs consisting
of a weight βi ∈ Fp and a signature σi. Output: a signature σ.
(The intuition is that if the σi are signatures on vectors vi, then σ is a signature on

∑`
i=1 βivi.)

Verify(PK, id,m,y, σ). Input: A public key PK, an identifier id ∈ I, an integer m < N indicating
the dimension of the space being signed, a vector y ∈ FN

p , and a signature σ. Output: 0 (reject)
or 1 (accept).

We require that for each (p, PK, SK) output by Setup(1k, N), the following hold:

– For all id ∈ I and all y ∈ FN
p , if σ ← Sign(SK, id,m,y) then Verify(PK, id,m,y, σ) = 1.

– For all id ∈ I, any ` > 0, and all sets of triples {(βi, σi,vi)}`i=1, if Verify(PK, id,m,vi, σi) = 1
for all i, then it must be the case that

Verify
(
PK, id, m,

∑
i βivi, Combine(PK, id, {(βi, σi)})

)
= 1.

If we wish to sign a vector space V ⊆ FN
p of dimension m, we can use any set of basis vectors

to describe V . In particular, by row-reducing and changing the order of variables, we may assume
without loss of generality that the basis {vi} consists of augmented vectors, i.e., the last m co-
ordinates of vi form a unit vector with a 1 in the ith position. We will call such a basis properly
augmented. Let n = N −m. It follows directly that if v1, . . . ,vm is a properly augmented basis of
V , then for any y ∈ FN

p with y = (y1, . . . , yn, yn+1, . . . yn+m) we have

y ∈ V ⇐⇒ y =
m∑

i=1

yn+ivi. (1)

We can thus form a signature on any vector y ∈ V from the signatures on a properly augmented
basis {vi} by using the last m coordinates of the vector y as the weights in the Combine algorithm.
This observation allows us to construct a scheme satisfying Definition 1 directly from a scheme
satisfying Definition 2, by defining the signature on a vector space V to be the set of signatures on
the basis vectors vi.

Lemma 3. Let (Setup2,Sign2,Combine2,Verify2) be a homomorphic network coding signature scheme.
Then (Setup1,Sign1,Verify1), defined as follows, is a network coding signature scheme.

Setup1(1k, N) = Setup2(1k, N).

Sign1(SK, id, V) = (Sign2(SK, id,m,v1), . . . ,Sign2(SK, id,m,vm)), where v1, . . . ,vm is a prop-
erly augmented basis of V ⊂ FN

p . We denote the signature by σ = (σ1, . . . , σm).

7

Verify1(PK, id,y, σ) = Verify2

(
PK, id, m, y, Combine2

(
PK, id, {(yN−m+i, σi)}mi=1

))
.

Proof. It suffices to demonstrate the correctness condition of Definition 1; this follows from (1)
and correctness of the homomorphic scheme. ut

Security. We define security of a network coding signature scheme satisfying Definition 1, and we
say that a homomorphic scheme satisfying Definition 2 is secure if the network coding signature
scheme constructed as in Lemma 3 is secure.

An adversary can break a network coding signature scheme in two ways. First, she can cre-
ate a valid signature on a previously unseen vector space, allowing her to create entire files that
will be accepted as valid; this corresponds to the usual notion of signature forgery. Alternatively,
given a signature σ on a vector space V , the adversary can produce a vector y 6∈ V such that
Verify(PK, id,y, σ) = 1; this allows her to inject malicious packets into the system which the client
will then attempt to use to reconstruct the file. We formalize these notions in the following game,
played between a challenger and an adversary.

Definition 4. A network coding signature scheme S = (Setup,Sign,Verify) is secure if the advan-
tage of any probabilistic, polynomial-time adversary A in the following security game is negligible
in the security parameter k:

Setup. The adversary A sends a positive integer N to the challenger. The challenger runs
Setup(1k, N) to obtain (p, PK, SK), and sends p and PK to A.

Queries. Proceeding adaptively, A specifies vector subspaces Vi ⊂ FN
p . The challenger chooses

an identifier idi uniformly at random from the set of identifiers I, and sends idi and σi :=
Sign(SK, idi, Vi) to A.

Output. The adversary A outputs an identifier id∗, a signature σ∗, and a vector y∗ ∈ FN
p .

The adversary wins the security game if Verify(PK, id∗,y∗, σ∗) = 1, and either (1) id∗ 6= idi for
all i and y∗ 6= 0 (a type 1 forgery), or (2) id∗ = idi for some i and y∗ 6∈ Vi (a type 2 forgery).

The advantage NC-Adv[A,S] of A is defined to be the probability that A wins the security game.

Note that the “forgery” in which an adversary A obtains a signature σ on a vector space V and
outputs a valid signature σ′ on a vector space V ′ ⊂ V does not win the security game. Indeed, in
the context of network coding this would not be problematic.

3.2 Bilinear Groups and Complexity Assumptions

We briefly review the framework of groups with bilinear maps.

Definition 5. A bilinear group tuple is a tuple (G1,G2,GT , e, ϕ) with the following properties:

1. G1,G2,GT are cyclic groups (written multiplicatively) of the same order, in which random
sampling and group operations are efficiently computable.

2. e : G1 ×G2 → GT is an efficiently computable map satisfying the following:
(a) Bilinearity: for any g ∈ G1, h ∈ G2, and a, b ∈ Z, e(ga, hb) = e(g, h)ab.
(b) Non-degeneracy: if g generates G1 and h generates G2, then e(g, h) generates GT .

8

3. ϕ : G2 → G1 is an efficiently computable isomorphism.

For cryptographic applications, we require that the discrete logarithm problem — i.e., computing
x given g and gx — be infeasible in the groups G1,G2,GT . Given an algorithm A that takes as input
two elements g, h in a group G and outputs an integer x in {0, . . . , |G|−1}, we define DL-Adv[A,G]
to be the probability that h = gx, taken over inputs (g, h) and the random coins of A.

Currently the only known bilinear group tuples in which the discrete logarithm problems are
believed to be infeasible are those for which G1,G2 are (subgroups of) groups of rational points on
elliptic curves or abelian varieties over finite fields; GT is (a subgroup of) a multiplicative group of
a finite field; and e is (a variant of) the Weil pairing or the Tate pairing. Elliptic curves and abelian
varieties with the desired properties are called “pairing-friendly.” For further details, see [10].

The proof of security of our first signature scheme (Section 4) relies not on the discrete logarithm
problem but on a slightly stronger assumption, namely that the co-computational Diffie Hellman
(or co-CDH) problem in (G1,G2) is infeasible. The co-CDH problem is the problem of computing
gx ∈ G1 given g ∈ G1 and h, hx ∈ G2. An algorithm A that solves co-CDH in a pair of groups
(G1,G2) takes as input a generator g of G1, a generator h of G2, and an element z = hx ∈ G2, and
outputs an element ω ∈ G1. We define co-CDH-Adv[A, (G1,G2)] to be the probability that ω = gx,
taken over inputs (g, h, z) and the random coins of A. We note that if in addition to ϕ : G2 → G1

there is also an efficiently computable isomorphism ψ : G1 → G2 then co-CDH problem in (G1,G2)
is equivalent to the standard computational Diffie-Hellman problem in either G1 or G2.

4 A Homomorphic Network Coding Signature Scheme

In this section we construct a homomorphic network coding signature scheme (Definition 2) with
constant-size public key and constant-size per-vector signatures.

Signature Scheme NCS1.

Setup(1k, N). Given a security parameter 1k and a positive integer N , do:
1. Generate a bilinear group tuple G = (G1,G2,GT , e, ϕ) such that G1,G2,GT have prime

order p > 2k. Choose generators g1, . . . , gN
R← G1 \ {1} and h R← G2 \ {1}.

2. Choose α R← Fp, and set u := hα.
3. Let H : Z× Z→ G1 be a hash function, modeled as a random oracle.
4. Output p, the public key PK := (G,H, g1, . . . , gN , h, u) and the private key SK := α.

Since the elements g1, . . . , gN can be generated as the output of an independent hash
function H ′ (also modeled as a random oracle), the public key can be compressed to have
constant size.

Sign(SK, id,m,v). Given a secret key SK = α, an identifier id ∈ {0, 1}k, an integerm indicating
the dimension of the space being signed, and a vector v ∈ FN

p , this algorithm sets n := N −m
and outputs the signature

σ :=

 m∏
i=1

H(id, i)vn+i

n∏
j=1

g
vj

j

α

.

9

Combine(PK, id, {(βi, σi)}`i=1). Given a public key PK, a file identifier id, and ` pairs consisting
of a weight βi ∈ Fp and a signature σi, this algorithm outputs σ :=

∏`
i=1 σ

βi
i .

Verify(PK, id,m,y, σ). Given a public key PK = (g1, . . . , gN , h, u), an identifier id, an integer
m indicating the dimension of the space being signed, a signature σ, and a vector y ∈ FN

p , set
n := N −m and define

γ1(PK, σ) def= e (σ, h) and γ2(PK, id,m,y) def= e

 m∏
i=1

H(id, i)yn+i

n∏
j=1

g
yj

j , u

 .

If γ1(PK, σ) = γ2(PK, id,m,y) this algorithm outputs 1; otherwise it outputs 0.

We now demonstrate the correctness conditions of Definition 2. The fact that signatures output
by the Sign algorithm verify correctly follows immediately from the bilinearity of the pairing e and
the fact that u = hα. As for correctness of the Combine algorithm, let {(vk, σk)}`k=1 be a set of valid
message-signature pairs; i.e., γ1(PK, σk) = γ2(PK, id,m,vk) for all k. Let β1, . . . , β` ∈ Fp, and let
y =

∑`
k=1 βkvk. Define

σ := Combine(PK, id, {(βk, σk)}) =
∏̀
k=1

σβk
k .

We need to show that γ1(PK, σ) = γ2(PK, id,m,y).
By the bilinear property of e, we have

γ1(PK, σ) = e

(∏̀
k=1

σβk
k , h

)
=
∏̀
k=1

e(σk, h)βk =
∏̀
k=1

γ1(PK, σk)βk ,

while

γ2(PK, id,m,y) = e

 m∏
i=1

H(id, i)yn+i

n∏
j=1

g
yj

j , u


= e

(m∏
i=1

H(id, i)
P`

k=1 βkvk,n+i

) n∏
j=1

g
P`

k=1 βkvkj

j

 , u


= e

(∏̀
k=1

m∏
i=1

H(id, i)βkvk,n+i

)∏̀
k=1

n∏
j=1

g
βkvkj

j

 , u


=
∏̀
k=1

e

 m∏
i=1

H(id, i)vk,n+i

n∏
j=1

g
vkj

j , u

βk

=
∏̀
k=1

γ2(PK, id,vk)βk .

The fact that γ1(PK, σ) = γ2(PK, id,m,y) now follows from the fact that γ1(PK, σk) = γ2(PK, id,m,vk)
for all k.

Note that if v is a properly augmented basis vector, so that (vn+1, . . . , vn+m) is a unit vector,
then the time to sign v is dominated by the time to compute a single hash into G1 (taking time

10

similar to a full exponentiation) plus n additional exponentiations in G1. If elements of G1 are
represented using log2 p bits, then a signature on a vector is just log2 p bits. Such groups G1 can be
obtained by using pairing-friendly elliptic curves of prime or near-prime order, such as supersingular
curves or the families of ordinary curves given by Miyaji, Nakabayashi, and Takano [26], Barreto-
Naehrig [2], or Freeman [11].

We now prove the security of signature scheme NCS1; more precisely, we prove the security of
the network coding signature scheme NCS′1 constructed from NCS1 as in Lemma 3. We show that
either type of forgeries can be used to solve the co-CDH problem in (G1,G2). An essential ingredient
in the proof is the efficiently computable isomorphism ϕ : G2 → G1, which exists naturally in all
of the commonly used bilinear groups. We assume that all vector spaces V queried to the signing
oracle are described by a set of properly augmented basis vectors.

Theorem 6. Let NCS′1 be the network coding signature scheme NCS1 constructed from Signature
Scheme NCS1 via the method of Lemma 3. The scheme NCS′1 is secure in the random oracle model
assuming that co-CDH problem in (G1,G2) is infeasible.

In particular, let A be a polynomial-time adversary as in Definition 4. Then there exists a
polynomial-time algorithm B that computes co-CDH in (G1,G2), such that

NC-Adv[A,NCS′1] ≤ co-CDH-Adv[B, (G1,G2)] +
1
p

+
qs(qs + qh)

2k
,

where qs and qh are the numbers of signature and hash queries, respectively, made by A.

Proof. Let A be an adversary as in Definition 4. We construct an algorithm B that takes as input
g ∈ G1 and h, z ∈ G2, with z = hx and outputs an element ω ∈ G1. Algorithm B simulates the
hash function H and the Setup and Sign algorithms of NCS′1, and works as follows. (Recall that
NCS′1 is the network coding signature scheme constructed from NCS1 as in Lemma 3.)

Setup. When A requests Setup(1k, N), B does the following:
1. Generate a bilinear group tuple G = (G1,G2,GT , e, ϕ) such that G1,G2,GT have prime

order p > 2k.
2. Choose random s1, t1, . . . , sN , tN ∈ Fp, and set gj := gsjϕ(h)tj for j = 1, . . . , N .
3. Output the public key PK := (G,H, g1, . . . , gN , h, z), where H queries B’s hash simulator.

Hash query. When A requests value of H(id, i), algorithm B does the following:
1. If (id, i) has already been queried, return H(id, i).
2. If (id, i) has not been queried, choose ςi, τi

R← Fp and set H(id, i) := gςiϕ(h)τi .

Sign. When A requests a signature on a vector space V ⊂ FN
p , described by properly aug-

mented basis vectors v1, . . . ,vm ∈ FN
p , algorithm B does the following:

1. Choose a random id
R← {0, 1}k. If H(id, i) has already been queried for some i in 1, . . . ,m

then abort. (The simulation has failed.)
2. Set n := N−m and compute ςi := −

∑n
j=1 sjvij for i = 1, . . . ,m. Set s := (s1, . . . , sn, ς1, . . . , ςm).

3. Choose τi
R← Fp for i = 1, . . . ,m. Set t := (t1, . . . , tn, τ1, . . . , τm).

4. Set H(id, i) := gςiϕ(h)τi for i = 1, . . . ,m.
5. Compute σi := ϕ(z)vi·t.

11

6. Output id and σ := (σ1, . . . , σm).

Output. If B does not abort, then eventually A outputs a signature σ of length m, an identifier
id, and a nonzero vector y.
1. If id is not one of the identifiers chosen on a signature query, run hash queries on H(id, i)

as above for i = 1, . . . ,m. Set s := (s1, . . . , sn, ς1, . . . , ςm) and t := (t1, . . . , tn, τ1, . . . , τm).
2. If id is one of the identifiers chosen on a signature query, let s and t be the vectors produced

during that query.

3. Set n := N −m and output ω :=
(∏m

i=1 σ
yn+i

i

ϕ(z)t·y

)1/(s·y)

.

We first observe that the responses to all hash queries are uniformly random in G1. We also
observe that the g1, . . . , gN are random group elements, and thus the public key PK output by B
is distributed identically to the public key produced by the real Setup algorithm.

Next we show that the signatures σ output by B are identical to the signatures that would be
produced by the real Sign algorithm given the public key PK and hash queries produced by B.
Since the secret key corresponding to PK is x, it suffices to show that for each vi, m∏

i=1

H(id, i)vi,n+i

n∏
j=1

g
vi,j

j

x

= ϕ(z)vi·t, (2)

where the left hand side is the “real” signature and the right hand side is the signature output by
B. The left hand side is equal to m∏

i=1

(gςiϕ(h)τi)vi,n+i

n∏
j=1

(
gsjϕ(h)tj

)vi,j

x

=
(
gs·viϕ(h)t·vi

)x
. (3)

Now observe that we constructed s so that s ∈ V ⊥ (i.e., s · vi = 0 for all i), so this expression is
equal to ϕ(h)x(t·vi). Equation (2) now follows from the fact that ϕ(z) = ϕ(h)x.

We next analyze the probability that B aborts while interacting with A. There are two scenarios
in which this can happen: if B responds to two different signature queries by choosing the same
identifier id, or if B responds to a signature query by choosing an identifier id such that A has
already requested the value of H(id, i) for some i. The probability of the first event is at most
q2s/2

k, while the probability of the second event is at most qsqh/2k.
Suppose B does not abort and A outputs a signature σ, an identifier id, and a nonzero vector

y. Let σ = (σ1, . . . , σm). If Verify(PK, id,y, σ) = 1 then

e

(
m∏

i=1

σ
yn+i

i , h

)
= e

 m∏
i=1

H(id, i)yn+i

n∏
j=1

g
yj

j , u

 .

By the same reasoning as in (3) the right hand side is equal to

e
(
gs·yϕ(h)t·y, z

)
= e
(
gx(s·y)ϕ(z)t·y, h

)
,

where s and t are determined from id as in Steps (1) and (2) of B’s output procedure. The non-
degeneracy of e then implies that

12

m∏
i=1

σ
yn+i

i = gx(s·y)ϕ(z)t·y.

It follows that if s · y 6= 0 then the element ω output by B is equal to gx.
We now consider the two types of forgeries, and show that s ·y = 0 with probability 1/p in both

cases. If A outputs a type 1 forgery, then A did not obtain id as the result of a signing query. In this
case the only functions of ςi for this id that B sends to A are the values of H(id, i) for i = 1, . . . ,m,
and it is clear from the construction that the values of ςi are uniform in Fp and independent of the
adversary’s view. In addition, by Lemma 7 below the variables s1, . . . , sN are uniform in Fp and
independent of the adversary’s view. Since s = (s1, . . . , sn, ς1, . . . , ςm) and y is nonzero, it follows
that s · y is uniformly distributed in Fp, and thus the probability that s · y = 0 is 1/p.

Now suppose that A outputs a type 2 forgery, so id is the identifier returned on some query
V , and y 6∈ V . By Lemma 7 below the variables s1, . . . , sN are uniform in Fp and independent
of the adversary’s view. Since {vi} is a properly augmented basis, this implies that for any given
adversary view, the vector s = (s1, . . . , sn, ς1, . . . , ςm) is uniformly random in V ⊥.

To complete the proof, we show that a uniform distribution on s ∈ V ⊥ produces a uniform
distribution on s · y ∈ Fp. To see this, first recall that (V ⊥)⊥ = V . It follows that if y 6∈ V then
there is some w1 ∈ V ⊥ such that w1 · y 6= 0. Extend w1 to a basis w1, . . . ,wn of V ⊥ and write
s =

∑n
i=1 aiwi. Since s is uniformly distributed in V ⊥ the coefficients ai are independent and

uniformly distributed in Fp. Since w1 · y 6= 0, it follows that s · y =
∑n

i=1 ai(wi · y) is uniformly
distributed in Fp. We conclude that the probability that s · y = 0 is 1/p, and hence ω = gx as
required. ut

Lemma 7. Suppose that adversary A interacts with the simulator B as above. Then the variables
s1, . . . , sN are uniform in Fp and independent of the adversary’s view.

Proof. In proving the lemma we can ignore any queries forH(id, i) where id is not an identifier used
to respond to a signing query, since (a) the variables s1, . . . , sN are not involved in these queries,
and (b) the variables that are involved in these queries are not involved in any other interaction
between A and B.

We show that for any given adversary view and any choice of values for s1, . . . , sN , there
is a unique choice of values for all of the other variables in the system that is consistent with
the adversary’s view. The adversary’s view consists of the public key PK and the signatures on
subspaces Vk for k = 1, . . . , qs. Let mk = dimVk. Hence, the adversary’s view is derived from
2N +

∑
2mk random variables:

– The public key is derived from sj , tj for j = 1, . . . , N .
– The kth signature is derived from the sj , tj and ςi, τi for i = 1, . . . ,mk.

Moreover, the adversary has N +
∑

3mk linear relations on these variables:

– N relations derived from the public key,
– mk relations derived from the values of H(id, i) for the kth query,
– mk relations derived from the signature (σ1, . . . , σmk

) for the kth query,
– mk relations derived from the fact that s ∈ V ⊥ for the kth query.

13

We set the following notation:

sL = (s1, . . . , sN)
sR
k = (ς1, . . . , ςmk

) for the kth signature query
tL = (t1, . . . , tN)
tR
k = (τ1, . . . , τmk

) for the kth signature query.

Let V̄k be themk×N matrix whose ith row consists of the firstN−mk entries (i.e., the unaugmented
part) of the basis vector vi for the kth query, followed by mk zeroes. Let ϕ(h) = gα. The system of
equations seen by the adversary is

sL + αtL = c1 (public key) (4)
sR
k + αtR

k = c2,k (values of H(id, i)) (5)
V̄ktL + tR

k = c3,k (signatures) (6)
V̄ksL + sR

k = 0 (s ∈ V ⊥) (7)

for some vectors c1 ∈ FN
p , c2,k ∈ Fmk

p , c3,k ∈ Fmk
p known to the adversary (who we assume can

compute discrete logs in G1). We wish to show that the system has a unique solution for any value
of sL.

We now observe that the last equation (7) is redundant: specifically, (7) = V̄k(4) + (5)− α(6).
Since the system has at least one solution by construction, any choice of variables satisfying (4)–(6)
must also satisfy (7).

Now suppose sL is fixed; then equation (4) determines a unique value for tL. For each k, equation
(6) and this value of tL determine a unique value for tR

k , from which equation (5) determines a unique
value of sR

k . Thus for any value of sL there is a unique solution to the system (4)–(7). We conclude
that sL = (s1, . . . , sN) is uniform in FN

p and independent of the adversary’s view. ut

5 A Secure Network Coding Signature Scheme without Random Oracles

Krohn et al. [24] propose authenticating network coding data using a homomorphic hash function.
As in Definition 2, their system produces a signature σi on each basis vector of the subspace to
be authenticated. However, their system is not secure according to our definition, as there is no
mechanism to ensure that basis vectors from different files are not combined at reconstruction time.
Our solution is to authenticate all of the hash values, along with the file identifier, using a standard
signature scheme, which we denote by S0. This modification produces a secure network coding
signature scheme (Definition 1) but eliminates the homomorphic property.

We now describe the scheme using the framework of Definition 1. Security is based on the discrete
logarithm assumption, without random oracles. Let S0 = (Setup0,Sign0,Verify0) be a signature
system for signing messages in {0, 1}∗.

Signature Scheme NCS2.

Setup(1k, N). Input: positive integers 1k and N .
1. Choose a group G of prime order p > 2k.
2. Run Setup0(1k) and let the public/private keys be PK0, SK0.

14

3. Choose generators gi
R← G \ {1} for i = 1, . . . , N .

4. Output the prime p, the public key PK := (g1, . . . , gN , PK0), the private key SK := SK0,
and descriptions of G and S0.

Sign(SK, id, V). Input: A secret key SK, a file identifier id, and an m-dimensional subspace
V ⊂ Fn+m

p , with 0 < m,n ≤ N , described as a set of properly augmented basis vectors
v1, . . . ,vm ∈ FN

p .

1. Set n := N −m and compute σi :=
∏n

j=1 g
−vij

j for i = 1, . . . ,m.

2. Set τ := Sign0(SK, (id, σ1, . . . , σm)).

3. Output σ := (σ1, . . . , σm, τ).

Verify(PK, id,y, σ). Input: A public key PK = (g1, . . . , gN , PK0), an identifier id, a signature
σ = (σ1, . . . , σm, τ), and a vector y ∈ FN

p .
1. Run Verify0(PK0, (id, σ1, . . . , σm), τ). If the answer is 0, output 0.

2. Set n := N −m. If
(∏n

j=1 g
yj

j

)(∏m
i=1 σ

yn+i

i

)
= 1 output 1; otherwise output 0.

We now demonstrate the correctness condition of Definition 1. Clearly the τ produced by the
algorithm satisfies

Verify0(PK0, (id, σ1, . . . , σm), τ) = 1.

If the σi are computed correctly, then Step (2) of the Verify algorithm computes n∏
j=1

g
yj

j

 m∏
i=1

n∏
j=1

g
−vij

j

yn+i

=
n∏

j=1

g
yj−

Pm
i=1 yn+ivij

j .

If y ∈ V then since {vi} is a properly augmented basis we have y =
∑m

i=1 yn+ivi, so the exponent
of each factor on the right-hand side is zero, and thus the entire product is the identity in G.

If elements of G are represented using log2 p bits and the signature scheme S0 produces sig-
natures of size log2 p, then the size of the signature σ is (m + 1) log2 p bits. We remark that if
one is willing to use the random oracle model, we may consider signature scheme NCS2 to have a
constant-size public key, as the values g1, . . . , gN may be computed as the output of a hash function
H (viewed as a random oracle).

Theorem 8. The network coding signature scheme NCS2 is secure assuming hardness of the dis-
crete logarithm problem in G, and assuming S0 is a secure signature scheme.

In particular, let A be a polynomial-time adversary as in Definition 4. Then there exists a
polynomial-time adversary B1 that forges signatures for S0 and a polynomial-time algorithm B2

that computes discrete logarithms, such that

NC-Adv[A,NCS2] ≤ Sig-Adv[B1,S0] + 2 ·DL-Adv[B2,G],

where Sig-Adv[B1,S0] is the probability that B1 wins the security game for the standard signature
scheme S0 (see [22, §12.2]).

15

Proof. Suppose algorithm A as in Definition 4 produces a signature σ = (σ1, . . . , σm, τ), an iden-
tifier id, and a vector y such that Verify(PK, id, σ,y) = 1. If id is not one of the identifiers re-
turned on a signature query (type 1 forgery), then A has forged an S0 signature τ for the message
(id, σ1, . . . , σm); the construction of the adversary B1 is standard.

Now suppose id is an identifier returned in response to a signature query on the vector space V ,
and that y 6∈ V (type 2 forgery). Let H be the “hash function” H(v) =

∏n
j=1 g

vj

j . Since y 6∈ V
we have y′ :=

∑m
i=1 yn+ivi 6= y. The fact that the signature verifies implies that H(y) = H(y′),

and thus we have produced a collision for H(·). By standard arguments [6, 3], an algorithm A that
produces such a collision with probability ε can be used to compute discrete logarithms in G with
probability at least ε/2. For further details, see [24, §VI]. ut

Relation with [28]. Signature Scheme NCS2 can also be viewed as a secure instantiation of
the signature scheme proposed by Zhao et al. [28]. Given a vector space V described as a set
of basis vectors vi, the Zhao et al. scheme computes a secret vector u ∈ V ⊥ and publishes
(h1, . . . , hN) = (gu1 , . . . , guN), where g is a generator of a group G in which the discrete loga-
rithm problem is infeasible, along with a signature on this tuple. Verification of y involves checking
whether

∏N
j=1 h

yj

j = gu·y is the identity in G. Correctness follows from the fact that u ∈ V ⊥, and
security follows from the fact that computing y 6∈ V such that u · y = 0 permits computation of
discrete logarithms in G (see [28, Theorem 1] or [4, Lemma 3.2]).

To view the scheme NCS2 from this perspective, we pick a generator g of G and write the first
n = N−m elements of the public key of Scheme NCS2 as gu1 , . . . , gun . If we let un+i =

∑n
j=1−ujvij ,

then the signature element σi is equal to gun+i , and if {vi}mi=1 is a properly augmented basis then
the vector u = (u1, . . . , uN) is in V ⊥. The verification step then computes gu·y just as in the Zhao
et al. scheme.

The signatures produced by scheme NCS2 have length O(m) and are thus much shorter than
those signatures of Zhao et al., which have length O(N). In addition, the incorporation of the file
identifier into the S0 signature τ allows us to sign multiple messages with a single public key, which
the original Zhao et al. scheme was unable to do.

6 A Lower Bound on Signature Size

We now prove a lower bound on the length of signatures for linear subspaces. Our lower bound
applies to network coding signature schemes (Definition 1) that satisfy the following two properties:

– Additive: For any PK, id, σ, and vectors u,v ∈ FN
p , if Verify(PK, id,u, σ) = Verify(PK, id,v, σ)

= 1 then Verify(PK, id,u + v, σ) = 1. Both of our constructions above are additive.

– Fixed size: For a given m > 0 and a given SK, the size in bits of the signature Sign(SK, id, V)
is the same for all identifiers id and m-dimensional spaces V ⊂ FN

p . Again, this holds for both
of the systems in this paper. We make this assumption primarily to simplify the presentation;
a version of our bound holds even if this property is not satisfied.

For a secret key SK and integersN,m let `SK,N,m be the length in bits of signatures Sign(SK, id, V)
where V is an m-dimensional subspace of FN

p .

For signatures that satisfy these two properties, we show that the signature size must be about
m log2 p bits or more. In particular, we construct an attack algorithm that forges signatures for any

16

SK that generates signatures shorter than our bound. Hence, if the scheme is to be secure then for
almost all secret keys the signature size must be greater than our bound.

The intuition behind our lower bound is that if signatures are short, then by the pigeonhole
principle there is a large set V of linear subspaces that all have the same signature σ. If signatures
are sufficiently short, then the direct sum of the spaces in V spans all of FN

p . Since the signature
scheme is additive this implies that Verify(PK, id, σ,y) = 1 for any y ∈ FN

p ; we will call a signature
σ with this property (for a fixed identifier id) trivial. We conclude that there are many subspaces
V with trivial signatures; the system can then be easily attacked by choosing a random subspace
V , obtaining a signature on V , and producing a vector y 6∈ V .

Theorem 9. Let N,m be integers with 0 < m ≤ N . Let (Setup,Sign,Verify) be a network coding
signature scheme satisfying the two properties above. There is an adversary A with running time
polynomial in 1k with the following property: let (p, SK,PK) R← Setup(1k, N) and suppose the
quantity `SK,N,m satisfies

`SK,N,m ≤ m log2 p− (4m/p)− 1. (8)

Then A makes a single signature query and wins the security game of Definition 4 with probability
at least 1/2.

Proof. Fix a public/private key pair PK,SK. When the adversary queries a vector space V to
the challenger, the challenger produces an identifier id uniformly at random from the space I of
identifiers; in particular, id is independent of V . We may thus fix the randomness of the challenger
in advance and let id1 be the identifier produced on the first query. Although the Sign algorithm
may be probabilistic, once we have fixed the randomness each m-dimensional subspace V ⊂ FpN is
mapped to a unique signature σ := Sign(SK, id1, V).

We now proceed with a combinatorial argument. Let n = N−m. The number of m-dimensional
subspaces V ⊂ Fn+m

p is the p-binomial coefficient [27, Proposition 1.3.18]

(
n+m

m

)
p

=
(pn+m − 1)(pn+m−1 − 1) · · · (pn+1 − 1)

(pm − 1)(pm−1 − 1) · · · (p− 1)
> pmn.

Let U be the set of vector spaces V such that the signature on V is nontrivial, and let β be the
fraction of vector spaces V with nontrivial signatures; then the cardinality of U is at least pmnβ. Let
α be the number of distinct nontrivial signatures produced by signing all vector spaces V ∈ U with
identifier id1. Then by the pigeonhole principle, there is a set of vector spaces V ⊆ U of cardinality
at least pmnβ/α such that the signatures Sign(SK, id1, V) are identical for all V ∈ V. Call this
signature σ.

Let W ⊆ Fn+m
p be the direct sum of all the spaces in V. Since the signature system is additive,

we know that Verify(PK, id1,w, σ) = 1 for all w ∈W . If W = Fn+m
p then σ is trivial, contradicting

the assumption that V ⊆ U . Thus W is a subspace of Fn+m
p of dimension at most n+m−1. Then the

number of m-dimensional subspaces V contained in W is at most
(
n+m−1

m

)
p
< pm(n−1)(1 + 2/p)m,

and we have

pmn

(
β

α

)
≤ #V < pm(n−1)

(
1 +

2
p

)m

. (9)

17

Now suppose that for the key pair PK,SK the quantity `SK,N,m satisfies (8). Then the number
α of distinct nontrivial signatures satisfies

α ≤ pm · 2−4m/p

(
1
2

)
< pm

(
1 +

2
p

)−m(1
2

)
. (10)

where the second inequality follows from 22x > 1 + x for x > 0. Combining inequalities (9) and
(10), we see that the fraction β of subspaces with nontrivial signatures satisfies

β <
α

pm
·
(

1 +
2
p

)m

<
1
2
. (11)

Now adversary A works as follows: it chooses at random a vector space V ⊂ Fn+m
p and obtains

id1 and σ := Sign(SK, id1, V) from the signing oracle. The adversary then computes a vector y 6∈ V
and outputs (id1, σ,y) as the forgery. By (11) the probability that σ is trivial is at least 1/2, and if
this is the case then Verify(PK, id1,y, σ) = 1. Hence, A has advantage (as in Definition 4) at least
1/2 while making a single signature query. ut

7 Conclusion and Extensions

We studied the problem of signing a subspace V ⊂ FN
p in a manner that authenticates all vectors in

V . The question is motivated by the need for integrity in networks using network coding. We defined
the problem and described two secure systems. The first system is based on the CDH assumption
in the random oracle model, and is more functionally useful for network coding applications. The
second system is based on the weaker discrete-log assumption without random oracles. In both of
our systems, a single public key can be used to sign many linear spaces. We also proved a lower
bound on the length of such signatures and observed that both of our systems meet the lower
bound.

In real-life network coding applications, one may wish to vary the dimension of the ambient
space FN

p as well as the dimension of the subspaces Vi being signed. Our definitions above assume
that the dimension of the ambient space is fixed while the dimension of the subspaces Vi may vary.
However, our systems can easily be adapted to sign subspaces Vi contained in varying ambient
spaces FNi

p with a single public key by incorporating the dimension Ni into the hash function (for
scheme NCS1) or the S0 signature (for scheme NCS2).

References

1. R. Ahlswede, N. Cai, S. Li, and R. Yeung. “Network information flow.” IEEE Transactions on Information
Theory 46 (2000), 1204–1216.

2. P. Barreto and M. Naehrig. “Pairing-friendly elliptic curves of prime order.” In Selected Areas in Cryptography
— SAC 2005, Springer LNCS 3897 (2006), 319–331.

3. M. Bellare, O. Goldreich, and S. Goldwasser. “Incremental cryptography: The case of hashing and signing.” In
Advances in Cryptology — CRYPTO 1994, Springer LNCS 839 (1994), 216–233.

4. D. Boneh and M. Franklin. “An efficient public key traitor tracing scheme.” In Advances in Cryptology —
CRYPTO 1999, Springer LNCS 1666 (1999), 338–353.

5. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate and verifiably encrypted signatures from bilinear
maps.” In Advances in Cryptology — EUROCRYPT 2003, Springer LNCS 2656 (2003), 416–432.

18

6. S. Brands. “An efficient off-line electronic cash system based on the representation problem.” (1993). CWI
Technical Report CS-R9323.

7. J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. “A digital fountain approach to reliable distribution of
bulk data.” SIGCOMM Comput. Commun. Rev. 28 (1998), 56–67.

8. D. Charles, K. Jain, and K. Lauter. “Signatures for network coding.” In 40th Annual Conference on Informa-
tion Sciences and Systems (CISS ‘06) (2006). Available at http://eprint.iacr.org/2006/025. To appear in
International Journal of Information and Coding Theory.

9. P. A. Chou, Y. Wu, and K. Jain. “Practical network coding.” In 41st Allerton Conference on Communication,
Control, and Computing (2003).

10. S. Duquesne and G. Frey. “Background on pairings.” In Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy. Chapman & Hall/CRC, Boca Raton, FL (2006), 115–124.

11. D. Freeman. “Constructing pairing-friendly elliptic curves with embedding degree 10.” In Algorithmic Number
Theory — ANTS-VII, Springer LNCS 4076 (2006), 452–465.

12. C. Gkantsidis and P. Rodriguez. “Network coding for large scale content distribution.” In Proc. of IEEE
INFOCOM 2005 (2005), 2235–2245.

13. C. Gkantsidis and P. Rodriguez. “Network coding for large scale content distribution.” In Proc. of IEEE
INFOCOM 2005 (2005).

14. K. Han, T. Ho, R. Koetter, M. Médard, and F. Zhao. “On network coding for security.” In IEEE MILCOM
(2007).

15. T. Ho, R. Koetter, M. Médard, D. Karger, and M. Effros. “The benefits of coding over routing in a randomized
setting.” In Proc. of International Symposium on Information Theory (ISIT) (2003).

16. T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, and D. Karger. “Byzantine modification detection in
multicast networks using randomized network coding.” In Proc. of International Symposium on Information
Theory (ISIT) (2004), 144–152.

17. T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. “A random linear network coding
approach to multicast.” IEEE Trans. Inform. Theory 52 (2006), 4413–4430.

18. S. Jaggi. Design and Analysis of Network Codes. Ph.D. dissertation, California Institute of Technology (2006).
19. S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Médard, and M. Effros. “Resilient network coding in the

presence of Byzantine adversaries.” IEEE Trans. on Information Theory 54 (2008), 2596–2603.
20. R. Johnson, D. Molnar, D. Song, and D. Wagner. “Homomorphic signature schemes.” In Topics in cryptology

— CT-RSA 2002, Springer LNCS 2271 (2002), 244–262.
21. S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. “XORs in the air: practical wireless network

coding.” IEEE/ACM Trans. Netw. 16 (2008), 497–510.
22. J. Katz and Y. Lindell. Introduction to modern cryptography. Chapman & Hall/CRC, Boca Raton, FL (2008).
23. M. Kim, M. Médard, and J. Barros. “Counteracting Byzantine adversaries with network coding: An overhead

analysis.” (2008). Available at http://arxiv.org/abs/0806.4451.
24. M. Krohn, M. Freedman, and D. Mazieres. “On the-fly verification of rateless erasure codes for efficient content

distribution.” In Proc. of IEEE Symposium on Security and Privacy (2004), 226–240.
25. S.-Y. R. Li, R. W. Yeung, and N. Cai. “Linear network coding.” IEEE Trans. Inform. Theory 49 (2003), 371–381.
26. A. Miyaji, M. Nakabayashi, and S. Takano. “Characterization of elliptic curve traces under FR-reduction.” In

Information Security and Cryptology — ICISC 2000, Springer LNCS 2015 (2001), 90–108.
27. R. P. Stanley. Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics 49. Cambridge

University Press, Cambridge (1997).
28. F. Zhao, T. Kalker, M. Médard, and K. Han. “Signatures for content distribution with network coding.” In Proc.

of International Symposium on Information Theory (ISIT) (2007).

19

