
CS 388H: Cryptography Fall 2021

Homework 2: Symmetric Cryptography

Due: October 7, 2021 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/fa21/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: CBC Padding Oracle Attack [15 points]. Recall that when using a block cipher in CBC mode,
the message must be an even multiple of the block size. When encrypting messages whose length is not an
even multiple of the block size, the message must first be padded. In the TLS protocol (used for securing
traffic on the web), if v bytes of padding are needed, then v bytes with value (v −1) are appended to the
message. As a concrete example, if 1 byte of padding is needed, a single byte with value 0 is appended
to the message before applying CBC encryption. In TLS, the record layer is secured using an approach
called “MAC-then-Encrypt1” (which as we will soon see, is not the ideal combination). At decryption time,
the ciphertext is first decrypted (and the padding verified) before checking the MAC. In older versions
of OpenSSL, the library reports whether a decryption failure was due to a “bad pad” or due to a “MAC
verification failure.” One might think that it was beneficial to provide an informative error message on
decryption failure. As you will show in this problem, this turns out to be a disaster for security.

Suppose an adversary has intercepted a target ciphertext ct encrypted using AES-CBC. Let cti be any
non-IV block in ct. Let mi be the associated message block. Show that if the adversary is able to submit
ciphertexts to a CBC decryption oracle and learn whether the padding was valid or not, then it can learn
the last byte of mi with probability 1 by making at most 512 queries. Here, the CBC decryption oracle only
says whether the ciphertext was properly padded or not; it does not provide the output of the decryption
if successful. Then, show how to extend your attack to recover all of mi . Hint: Start by showing how to
test whether the last byte of mi is some value t by making 2 queries to the decryption oracle.

Remark: Are there settings where the server would repeatedly decrypt ciphertexts of the user’s choosing?
It turns out that when using IMAP (the protocol email clients use to fetch email) over TLS, the IMAP client
will repeatedly send the user’s password to the IMAP server to authenticate. With the above padding
oracle (implemented using a “timing channel”), an adversary can recover the client’s password in less
than an hour! This problem shows that if a decryption failure occurs, the library should provide minimal
information on the cause of the error. This type of “padding oracle” attack was the basis of the “Lucky 13”
attack on TLS 1.0 (2013)—many years after they were first discovered (2002) and thought to be patched!

1In MAC-then-encrypt, the encryption algorithm first computes a MAC t on the message m, and the ciphertext is the encryption
of the message-tag pair (m, t).

https://www.cs.utexas.edu/~dwu4/courses/fa21/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/sp21/info.html
https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1069/1069.pdf

Problem 2: Cryptographic Combiners [15 points]. Suppose we have two candidate constructions
Π1,Π2 of a cryptographic primitive, but we are not sure which of them is secure. A cryptographic combiner
provides a way to use Π1 and Π2 to obtain a new construction Π such that Π is secure if at least one of
Π1,Π2 is secure (without needing to know which ofΠ1 orΠ2 is secure). Combiners can be used to “hedge
our bets” in the sense that a future compromise of one ofΠ1 orΠ2 would not compromise the security of
Π. In this problem, we will study candidate combiners for different cryptographic primitives.

(a) Let G1,G2 : {0,1}λ → {0,1}3λ be arbitrary PRG candidates. Define the function G(s1, s2) := G1(s1)⊕
G2(s2). Prove or disprove: if at least one of G1 or G2 is a secure PRG, then G is a secure PRG.

(b) Let H1, H2 : {0,1}∗ → {0,1}λ be arbitrary collision-resistant hash function candidates. Define the
function H(x) := H1(H2(x)). Prove or disprove: if at least one of H1 or H2 is collision-resistant, then
H is collision-resistant.

(c) Let (Sign1,Verify1) and (Sign2,Verify2) be arbitrary MAC candidates2. Define (Sign,Verify) as follows:

• Sign((k1,k2),m): Output (t1, t2) where t1 ← Sign1(k1,m) and t2 ← Sign2(k2,m).

• Verify((k1,k2), (t1, t2)): Output 1 if Verify1(k1,m, t1) = 1 =Verify2(k2,m, t2) and 0 otherwise.

Prove or disprove: if at least one of (Sign1,Verify1) or (Sign2,Verify2) is a secure MAC, then (Sign,Verify)
is a secure MAC.

Problem 3: Adaptive vs. Non-Adaptive Security [25 points]. Let F : K×X →Y be a PRF. Recall that in
the PRF security game, the adversary issues queries to the challenger on inputs x1, . . . , xQ ∈X , and the
challenger replies with y1 = f (x1), . . . , yQ = f (xQ), where f = F (k, ·) is either a pseudorandom function or

a truly random function f
R←− Funs[X ,Y]. In this case, we say that the adversary makes adaptive queries

since xi can depend on the challenger’s responses y1, . . . , yi−1 to its previous queries.
We can also consider a weaker non-adaptive notion of security where the adversary has to submit all

of its queries upfront. Namely, at the beginning of the security game, it gives x1, . . . , xQ to the challenger
and receives y1, . . . , yQ . This is sometimes referred to as a “selective” notion of security since the adversary
is “selecting” its queries in advance.

(a) If F satisfies adaptive security, it is clear that it also satisfies non-adaptive security. Show that the
converse is not true. Namely, using F : K×X →Y , construct a new PRF F ′ that satisfies non-adaptive
security if F is a secure PRF (according to the standard adaptive definition), but does not satisfy
adaptive security even against adversaries that make just 2 queries. You should prove that (1) F ′

satisfies non-adaptive security (assuming security of F); and (2) F ′ does not satisfy adaptive security
against an adversary that makes two queries. To simplify things, you may assume that X =Y = {0,1}λ

where λ is the security parameter. Hint: Try changing the value of F on a single input. To prove
non-adaptive security of F ′, consider a hybrid structure where you first replace all invocations of
F (k, ·) (in the evaluation of F ′) with f (·) where f is a uniform random function. Then, show that
this experiment is indistinguishable from the experiment where the challenger answers all of the
adversary’s queries using a truly random function.

While a selective notion of security may seem unrealistic or overly restrictive on the capabilities of the
adversary, if oftentimes implies some form of the usual adaptive notion of security if we make a stronger

2Namely, you can assume that they are correct (but could be arbitrarily broken).

hardness assumption. This technique of converting a selectively-secure scheme into an adaptively-secure
one is called complexity leveraging. In many settings in cryptography, it is much easier to prove security
against selective adversaries, and complexity leveraging allows us to show that the same (or a closely-
related) construction is essentially adaptively secure just under a stronger assumption. In this problem,
we will develop this approach for PRFs.

(b) Suppose F : K×X →Y is a PRF with security against non-adaptive adversaries. Let A be an efficient
adversary for F that makes up to Q adaptive queries to F . Moreover, suppose we restrict A to only
make queries on inputs x ∈ S where S ⊆X . The set S is public and fixed (and there is an efficient
algorithm to sample elements from S). (We can set S =X , in which case this is a vacuous restriction,
but being able to consider smaller subsets S ⊂X gives a tighter bound). Show that for every A that
makes up to Q adaptive queries (where every query must be an element of the set S), there exists an
efficient non-adaptive adversary B for F such that

NonAdaptivePRFAdv[B,F] ≥ 1

|S|Q PRFAdvQ,S[A,F].

Here, PRFAdvQ,S[A,F] is the advantage of A in the standard PRF security game restricted to Q
queries from the set S, and NonAdaptivePRFAdv[B,F] is the advantage of B in the non-adaptive PRF
security game. Hint: Without loss of generality, you can assume that algorithm A always makes
exactly Q queries (since any adversary making fewer than Q queries can be converted into one that
makes exactly Q queries). Observe that the number of possible query sequences A can submit in the
adaptive security game is exactly |S|Q .

(c) Let {Fλ}λ∈N be a collection of functions where Fλ : {0,1}λ× {0,1}λ→ {0,1}. Suppose that there exists a
positive constant ε< 1 such that for all security parameters λ ∈N and all adversaries A running in
time poly(λ),

NonAdaptivePRFAdv[A,Fλ] ≤ 2−λε .

This is an example of a sub-exponential hardness assumption. Show how to use F = {Fλ}λ∈N to
construct a new family of PRFs F ′ = {F ′

λ
}λ∈N, where each F ′

λ
: {0,1}`Q,ε(λ) × {0,1}λ → {0,1} is defined

over the same domain and range as Fλ. Moreover, your PRF family F ′ should be secure against all
adaptive PRF adversaries making up to Q queries (where Q is a fixed polynomial in λ): namely, for all
security parameters λ ∈N and all efficient adversaries A for F ′ that makes up to Q queries,

PRFAdvQ [A,F ′
λ] ≤ negl(λ).

Your construction should specify your choice of the key length `Q,ε(λ). Use the result from Part (b) to
prove security of F ′. Hint: Define F ′

λ
using F`Q,ε(λ), where `Q,ε(λ) is a function of λ, Q, and ε.

Remark: In the case of PRFs, complexity leveraging only allowed us to argue security against adver-
saries making an a priori bounded number of queries rather than full adaptive security.

(d) Suppose you apply the complexity leveraging transformation from Part (c) to your non-adaptive PRF
from Part (a). Does your adaptive attack (using 2 queries) still break the resulting scheme? Give a
brief (and informal) explanation (e.g., 2-3 sentences).

Problem 4: Encrypting Twice, Revisited [20 points]. Let (Encrypt,Decrypt) be a symmetric authenti-
cated encryption scheme. For each of the following constructions (Encrypt′,Decrypt′), state whether
they are authenticated encryption schemes. If so, give a proof (you need to show both CPA-security and
ciphertext integrity); otherwise, give an attack.

(a) Define (Encrypt′,Decrypt′) as follows:

Encrypt′(k,m) = (
Encrypt(k,m),Encrypt(k,m)

)
Decrypt′(k, (c1,c2)) =

{
Decrypt(k,c1) Decrypt(k,c1) =Decrypt(k,c2)

⊥ otherwise.

(b) Define (Encrypt′,Decrypt′) as follows:

Encrypt′(k,m) = (
c,c

)
where c ←Encrypt(k,m)

Decrypt′(k, (c1,c2)) =
{
Decrypt(k,c1) c1 = c2

⊥ otherwise.

Problem 5: Time Spent [3 extra credit points]. How long did you spend on this problem set? This is for
calibration purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

