
CS 388H: Cryptography Fall 2021

Homework 5: Cryptographic Protocols

Due: December 2, 2021 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/fa21/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: Correlated Primes and Factoring [16 points]. When generating an RSA modulus N = pq ,
it is important to sample p, q independently. Suppose however we have a limited entropy pool, and the
primes p, q we sample happen to lie in a narrow interval:

∣∣p −q
∣∣< N 1/4. We will show that even though

N 1/4 is exponentially large, factoring is easy in this setting.

(a) Given N = pq where
∣∣p −q

∣∣< N 1/4, construct an efficient algorithm that recovers p, q . The running
time of your algorithm should be polynomial in the length of N (i.e., poly(log N )). Hint: First show
that the arithmetic meanµ= (p+q)/2 is very close to

p
N (i.e., 0 <µ−p

N < 1). One of the inequalities
(µ>p

N ) follows by the arithmetic-mean geometric-mean (AM-GM) inequality.

(b) Why is this attack not an issue if we sample p, q independently? (No need for a precise calculation.)

Problem 2: Basics of Interactive Proofs [18 points]. Recall that the class of languages with an interactive
proof system is the class of languages that can be decided with polynomial space: IP=PSPACE. Here, we
highlight several important aspects of interactive proofs:

(a) Prover randomness: Let L be a language with an interactive proof system with a randomized prover.
Show that there exists an interactive proof system for L with a deterministic prover (with the same
completeness guarantee).

(b) Verifier randomness: Let L be a language with an interactive proof system where the verifier is
deterministic. Show that L ∈NP.

Remark: The above two properties show that allowing the prover to be randomized does not increase
the power of interactive proofs, whereas allowing the verifier to be randomized is critical.

(c) Imperfect soundness: Let L be a language with a perfectly sound interactive proof (i.e., an un-
bounded prover will never convince the honest verifier of a statement x ∉L). Show that L ∈NP.

https://www.cs.utexas.edu/~dwu4/courses/fa21/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/sp21/info.html


Problem 3: Bit Commitments from PRGs [16 points]. In class, we constructed a zero-knowledge proof
for NP using a cryptographic commitment scheme. In this problem, we will show how to construct
a commitment scheme from PRGs. Let G : {0,1}λ → {0,1}3λ be a PRG. In this setting the commitment
scheme is an interactive protocol between a “committer” and a “verifier.” The protocol works as follows:

• Initial message: The verifier samples a random string r
R←− {0,1}3λ and sends it to the committer.

• Commitment: To commit to a bit b ∈ {0,1}, the committer samples a seed s
R←− {0,1}λ. If b = 0, it

sends c ←G(s) as its commitment and if b = 1, it sends c ←G(s)⊕ r as its commitment.

• Opening: To open up a commitment c ∈ {0,1}3λ, the committer sends (b, s) where b ∈ {0,1} is the
bit and s ∈ {0,1}λ is the seed used to construct the commitment. The verifier accepts if either
(b = 0∧G(s) = c) or (b = 1∧G(s) = r ⊕ c).

(a) Show that if G is secure, then this commitment scheme is computationally hiding, even against a
malicious verifier. Namely, show that if G is a secure PRG, then for any choice of initial message
r ∈ {0,1}3λ, a commitment to the bit 0 is computationally indistinguishable from a commitment to
the bit 1.

(b) Show that this commitment scheme is statistically binding. Namely, a dishonest committer (even
one that is computationally unbounded) cannot find a commitment c ∈ {0,1}3λ and openings s0, s1 ∈
{0,1}λ such that (0, s0) and (1, s1) are both valid openings, except with negligible probability over the

choice of r . Here, the verifier is honest and will always sample a uniform random string r
R←− {0,1}3λ.

Remark: In conjunction with the protocol from class, this problem shows that one-way functions (which
are sufficient for PRGs) imply (computational) zero-knowledge proofs for all NP languages.

Problem 4: Proving Relations in the Exponent [25 points]. Let G be a group of prime order p and
generator g where the DDH assumption holds. The Chaum-Pedersen protocol we discussed in class
allows a prover to convince a verifier that a tuple (g , g x , g y , g z ) is a DDH tuple (i.e., that z = x y mod p).
Namely, the Chaum-Pedersen protocol proves membership in the DDH language LDDH where

LDDH = {
(g ,h,u, v) ∈G4 | ∃x ∈Zp : (h = g x )∧ (v = ux )

}
.

In this problem, we consider two related algebraic languages. You should not use general zero-knowledge
proofs for NP languages in this problem.

(a) Proving validity of the DDH random self-reduction. A useful building block in various crypto-
graphic protocols is the ability to apply the DDH random self-reduction to a candidate DDH tuple
and prove that the self-reduction was applied properly. Specifically, define the following language
corresponding to the DDH random self-reduction:

Lrsr =
{(

(g ,h,u, v), (u′, v ′)
) | ∃α,β ∈Zp : (u′ = uαgβ)∧ (

v ′ = vαhβ
)}

.

Construct a Σ-protocol for Lrsr. Prove completeness, special soundness, and HVZK of your protocol.



(b) Proving that a tuple is not a DDH tuple. Consider the complement of the DDH language: namely,
that a tuple (g , g x , g y , g z ) is not a DDH tuple (i.e., that z 6= x y mod p). Formally, we can write

LnDDH = {
(g , g x , g y , g z ) | z 6= x y mod p

}
In this setting, the prover knows the exponents x, y, z ∈Zp , and both the prover and the verifier know
the statement (g , g x , g y , g z ). Use the Σ-protocol for Lrsr together with the Chaum-Pedersen protocol
to construct a Σ-protocol for LnDDH. Remember to prove completeness, soundness,1 and HVZK.
Hint: Consider the following scenario. Suppose Alice has the numbers 1 through 5 written down on
individual pieces of paper. She selects one of the numbers and places each of the remaining four
numbers in four different sealed envelopes. Alice wants to convince Bob that she did not choose the
number 3 without revealing anything more about her selection. Could she do this by opening exactly
one of the sealed envelopes?

Problem 5: Time Spent [3 extra credit points]. How long did you spend on this problem set? In addition,
please fill out the Course Instructor Survey (https://utdirect.utexas.edu/ctl/ecis/) to provide
feedback on your course experience this semester. To receive extra credit for this problem, please include
a screenshot of your CIS dashboard (accessible via the above link) to indicate you have completed the
survey. The CIS dashboard should only say whether you have completed the survey or not and should not
contain information about your survey responses for any class. Feel free to remove any information other
than your name and the name of this course from your proof of survey completion. In an ideal world, you
would prove that you completed the evaluation in zero knowledge. Can you think of a protocol to do this?

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course overall?

1You do not need to show special soundness here.

https://utdirect.utexas.edu/ctl/ecis/

