
Theory .
If (Encrypt, Decrypt) is CPA - secure and (Sign, Verify) is a secure MAC

, then (Encrypt
'

, Verify
') is an authenticated

encryption scheme
.

pooof.IS#etch. CPA - security follows by CPA- security of (Encrypt, Decrypt). Specifically, the MAC is computed on ciphertext and not

the
messages . MAC key is independent of encryption key so cannot compromise CPA -

security.

Ciphertext integrity follows directly from MAC security (i.e
, any valid ciphertext must contain a new tag on some

ciphertext that was not given to the adversary by the challenger .)

simulate ciphertext /MACS - only possible if reduction can choose its own key).

⇒""""

÷:÷:*:÷:÷÷:÷÷÷÷÷:÷÷÷÷::÷:*↳ Can also give explicit constructions that are complete.ly/oroken- if same key is used (i.e, both properties fail to

hold)

-

MAC needs to be computed over the entire ciphertext
f means first

-

Early version of ISO 19772 for AE did not MAC IV (CBC used for CPA -secure encryption) block lie,
"header

")
- RNcryptor in Apple iOS (for data encryption) also problematic (HMAC not applied to encryption Iv)) is malleable

MA_ÉEypt : Let (Encrypt, Verify) be a CPA- secure encryption scheme and (Sign, Verify) be a secure MAC. We define

MAC- then- Encrypt to be the following scheme :

Encrypt
' ((KE

,
km)

,
m) : t ← sign (km, m)

c ← Encrypt IKE , Cm,-4)

output c

Decrypt
' ((KE

,
km) , Cc ,-4) : compute (Mit)

← Decrypt CKE, c)
if Verify (km ,

m
,
t) = 1

, output m ,
else

, output 1-

Not generally secure ! SSL 3.0 (precursor to TLS) used randomized CBC t secure MAC

↳
Simple CCA attack on scheme (by exploiting padding in CBC encryption)

[POODLE attack on SSL 3,0 can decrypt all encrypted traffic using a CCA attack]

Padding is a common source of problems with MAC- then- Encrypt systems [see HW2 for an example]

In the past, libraries provided separate encryption + MAC interfaces
-

common source of errors

↳ Good library design for crypto should minimize ways
for users to make errors

, net provide more flexibility

Today , there are standard block cipher modes of operation that provide authen-icatedencrypt.io#
- One of the most widely used is GCM (Galois counter model - standardized by NIST in 2007

GCMm_ode: follows encrypt- then
- MAC paradigm

-

CPA - secure encryption is nonce- based counter mode } Most commonly used in conjaction with AES

- MAC is a Carter -Wegman MAC (AES-GCM provides authenticated encryption)

Construction based on a CarÉMAf (built on a one-time MAC)

QEMAL : analog of one-time for integrity
- Information - theoretic security against adversaries that only see one message

-

tag pair
- Does not need cryptography

-

can be much faster than cryptographic constructions

-

Basic construction : let
p
be a large prime (messages will be elements of Ip - integers modulo PF %

=

↳""
⇒

Key Gen : sample 2,13
*
Rp (two random integers in {0, . .- , p - l}) . Key is k = (9/3)

Sign (k , m) : output I
= ✗Mtp (mod p)

Verify (k ,m ,
T) : accept if I = ✗Mtp lmodp) and reject otherwise

-

Security : given m
,
T = ✗mtp, adversary wins only if it outputs m

'
=/ m and T

'
= ✗m

'

tp
since d

, P
£
Xp , we can show that for

any
choice of m =/ m

' and I
,
t
'
c- Ip :

Pr
✗ ,p←rzp[✗Mtp = T and am '+p=z

') = ¥
↳ (m

'

n' 111%1=1 :o)
⇒

1%1=1 :D -1¥]
t p

linearly independent uniform
if m =/ m'

in particular, for all m =/ m
' and T

,
T

' C- Zp :

Pr
✗,p←rzp[✗m

'
+ p = T

' / ✗Mtp = I] = f- =

neg/ (x) regardless of adversary's
running time

!

-

For longer messages m = mimz - - -

me
where each mi C- Zp , define the MAC to be

c- = M
,
✗
l
t made

"

t - - - +
me ✗ t p lmodp) very fast to evaluate : to process each message

- Still provides information-theoretic security : block: multiply by a and add current block

for
any m =/ m

' of length up to l and T,
T
' C- Zp :

T =P
+ Siege] mix

- it '

- (T- e') = 0

T
'

=p
+Eine] meal

- in
⇒ I (mi - mi / ✗

l- i -11

i c-Et]

-

polynomial of degree at } Pr [✗ is a root of this poly] = ¥
most l *%

←
the tag z adversary sees perfectly
hides ✗ since 13

Ip ,
So M

,
M
'

, T, T
'
is

independent of ✗

Carter - Wegman MAC (" encrypted MAC
") :

very lightweight , randomized
MAC from the one-time MAC :

- Let (Sign , Verity) be a one-time MAC (or more generally , a universal hash function)
- Let F : Kp ✗ R → {0,13

"

be a PRF

The Carter - Wegman MAC is defined as follows :

sign ((km, Kel , m) : r
E R Verify ((km, kf) , Crit)) : output 1 if Verify / km, F(kg , r) ④ t)

and 0 otherwiseµ + ← Signum) ④ ""F ' "

/very simple construction !key for one-time output (r , t)
MAC

but tags are longer (need both a nonce and a PRF output)

Advantage : Use a fast one-time MAC (no cryptography
!) on tong message } Paradigm used in GCM mode of operation

Apply cryptographic operation to short output (slower) and in PolyB03_
Polynomial evaluation over Ip (p=2"°_5)

b

ÉypEn : encrypt message with AES in counter mode f
Galois Hash

← key derived from PRF

compute Carter-Wegman MAC on resulting message using GHASH as the underlying hash function
evaluation at 0

"

and the block cipher as underlying PRF [GHASH operates on blocks of 128-bits

operations can be expressed as operations over

Typically , use NIEM for authenticated encryption

g-
GF (2128) - Galo-isf.ie# with 2128 elements

implemented in hard-core - very
fast !

61=(2^8) is defined by the polynomial gfx) = ✗
'28

+ ×
>
+ X' + ✗ + 1

↳ elements are polynomials over Ttz with degree less than 128 (e.g. ✗
'"
+ X
"

+ ✗
'
+ ✗ + I]

(can be represented by 128 - bit string : each bit is coefficient of polynomial)
↳

can add elements (✗or) and multiply them (as polynomials)
- implemented in hardware

(also used for evaluating the AES round function)
f-
(MG] , ME] , . . - , me])

l l- l
↳ GHASH (K, M) : = mfi] k + ME] k + - - - + m (e) K / values ME], . . . , ma] give coefficients of)polynomial , evaluate at point K

F-
same as one-time MAC

Oftentimes
, only part of the payload needs to be hidden

,
but still needs to be authenticated from above

↳ e.g. , sending packets over a network : desire confidentiality for packet body, but only integrity for packet headers (otherwise
,
cannot route !)

AEAD : authenticated encryption with associated data

↳
augment encryption scheme with additional plaintext input ; resulting ciphertext ensures integrity for associated data

,
but not confidentiality

(will not define formally here but follows straightforwardly from AE definitions)
↳
can construct directly via

"

encrypt - then- MAC
"
: namely, encrypt payload and MAC the ciphertext + associated data

↳ AES- GCM is an AEAD scheme

