So for in this course, we have shocun that
PRF \Rightarrow CPA-secure encryption \Rightarrow authenticated
\Rightarrow secure MAC $\quad \Rightarrow$ encryption
$\sqrt{\text { conceptually "simpler" object }}$
From HW1, we saw how to construct a PRF from a (length-doubling) PRG
\lfloor can be built from any PRG with 1-bit stretch
Question: Can we distill this further? Can we base symmetric cryptography on an even simpler primitive?

- Cryptography is about exploiting some kind of asymmetry: we want an operation that is "easy" for honest users, but hard for adversaries
- Suggests a notion of "hard to invert": ($\left.\begin{array}{l}\text { cannot recover seed from PRG, cannot decrypt without } \\ \text { knowledge of secret, etc. }\end{array}\right)$

Definition. A function $f: x \rightarrow y$ is ore-way if \quad Technically, $x=\left\{x_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ and $y=\left\{y_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ are

1. f is efficiently computable
2. for all efficient adversaries A : sets indexed by a security parameter λ and

$$
\operatorname{Pr}\left[x \leftrightarrow x, y \leftarrow A(f(x))_{\prime \prime}: f(x)=f(y)\right]=\operatorname{neg}(\lambda)
$$

$\left|x_{\lambda}\right|=\operatorname{poly}(\lambda)$.
"Function is hard to invert on average"
Theorem (Hastad-Impagliazzo-Levin-Luby). OWF \Rightarrow PR $\left[\begin{array}{l}\text { implies } O W F \text { is sufficient (and necessary) for symmetrize } \\ \text { cryptography }\end{array}\right]$
We will consider a weaker statement: one-way permutation \Rightarrow PR
Definition. A function $f: X \rightarrow X$ is a one-way permutation if

1. f is one -way
2. f is a permutation

Goal: given a OWP $f: X \rightarrow X$, can we construct a PRG with one-bit stretch.
Idea: if $x \leftrightarrow X$, then $f(x)$ is uniformly random
moreover, given $f(x)$, should be difficult to recover (all of) $x \leftarrow$ leverage this to get 1 psendorandon bit
Definition. Let $f: x \rightarrow y$ be a one-way function. Them $h: x \rightarrow R$ is a hard-core predicate for f if no efficient adversary can distinguish the following distributions:

$$
\begin{aligned}
& D_{0}:\{x \notin x:(f(x), h(x)) \\
& D_{1}:\{x \notin x, r \& R:(f(x), r)\}
\end{aligned}
$$

If a OWP has a hard-core predicate, that immediately implies a PRG:

$$
\operatorname{PRG}(s):=f(s) \| h(s)
$$

Typically, we will consider hard-core bits (ie, $R=\{0,1\}$

Lemma. Let $f: x \rightarrow y$ be a one way function. Suppose $h: x \rightarrow\{0,1\}$ is unpredictable in the following sense: for all efficient adversaries A :

$$
\left.\left|\operatorname{Pr}[x \leftarrow x: A(f(x))=h(x)]-\frac{1}{2}\right|=\operatorname{neg} \right\rvert\,(\lambda)
$$

If h is unpredictable, then it is a hard-cove bit. [Note: Converse of this is immediate]

Proof. Suppose there exists an efficient A that can distinguish between $(f(x), h(x))$ and $(f(x), r)$ for $x^{R} x$ and $b \in\{0,1\}$ with advantage ε. We use A to build a predictor B :

1. On input $f(x)$, sample $b \complement^{R}\{0,1\}$ and $\operatorname{run} A$ on input $((f(x), b)$.
2. If A outputs 1, then output b. Otherwise, output 1-6.

Intuition: Suppose A is more lily to output 1 given inputs from the "hard-core bit distribution". This means that A outputs 1 if we "guess correctly".
Formally: $\operatorname{Pr}[B(f(x))=h(x)]=\operatorname{Pr}[A(f(x), b)=h(x)]$

$$
\begin{aligned}
& =\operatorname{Pr}[A(f(x), b)=1 \mid b=h(x)] \underbrace{\operatorname{Pr}[b=h(x)]}_{=1 / 2}+\underbrace{\operatorname{Pr}[A(f(x), b)=0 \mid b=1-h(x)]}_{=1-\operatorname{Pr}[A(f(x), b)=1 \mid b=1-h(x)]} \underbrace{\operatorname{Pr}[b=1-h(x)]}_{=1 / 2} \\
& =\frac{1}{2}+\frac{1}{2}(\operatorname{Pr}[A(f(x), b)=1 \mid b=h(x)]-\operatorname{Pr}[A(f(x), b)=1 \mid b=1-h(x)]) \\
& =\frac{1}{2}+\frac{1}{2}(\underbrace{\operatorname{Pr}[A(f(x), h(x))=1}_{\alpha}]-\underbrace{\operatorname{Pr}[A(f(x), b)=1 \mid b=1-h(x)])}_{\beta}
\end{aligned}
$$

Now,

$$
\left.\begin{aligned}
\varepsilon & =|\operatorname{Pr}[A(f(x), h(x))=1]-\operatorname{Pr}[A(f(x), b)=1]| \\
& =\mid \alpha-\operatorname{Pr}[A(f(x), b)=1 \quad \mid b=h(x)] \operatorname{Pr}[b=h(x)] \\
& -\operatorname{Pr}[A(f(x), b)=1 \quad \mid b=1-h(x)] \operatorname{Pr}[b=h(x)]
\end{aligned} \right\rvert\,
$$

$$
\left|\operatorname{Pr}[B(f(x))=h(x)]-\frac{1}{2}\right|
$$

$$
=\left|\frac{1}{2}(\alpha-\beta)\right|
$$

$$
=\varepsilon
$$

Theorem (Goldreich-Levin). Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be a one-way function. For a string $r \in\{0,1\}^{n}$, define the function $h_{r}:\{0,1\}^{n} \rightarrow\{0,1\}$ where $h_{r}(x)=\sum r_{i} x_{i}(\bmod 2)$. Then the function $g(x, r):=(f(x), r)$ is one-way and h_{r} is a hard-core predicate for g.

Observe that if f is a OWP, then so is g
Proof Idea. One-waypess of g immediately follows from ove-wayness of f. Suffices to show that $h r$ is hard-core. Suppose that h_{r} is not a hard-core predicate for g. This means that there is an adversary A that can predict h_{r} given $(f(x), r)$ with probability $\frac{1}{2}^{+} \varepsilon$. We will use g to construct an adversary B that can invert f (and thus g).

Here: Suppose A succeeds with probability 1 :

$$
\operatorname{Pr}\left[A(g(x, r))=h_{r}(x)\right]=1 \quad\left(\text { for } x, r \leftarrow\{0,1\}^{n}\right)
$$

Given $y=f(x)$, run A on inputs $\underbrace{\left(y, e_{1}\right), \ldots,\left(y, e_{n}\right)}$ where e_{i} is the $i^{\text {th }}$ basis vector

$$
\begin{aligned}
h_{e_{i}}(x) & =\left\langle e_{i}, x\right\rangle \bmod 2 \\
& =x_{i} \in\{0,1\}
\end{aligned}
$$

Suppose now that A succeeds with probability $3 / 4+\varepsilon$ for constant $\varepsilon>0$:
Evaluating at e_{1}, \ldots, e_{n} not guarented to work since A could be wrong on all of these inputs

Analysis proceeds in two steps:

1. Fix an $x \in \mathbb{Z}_{2}^{n}$. Suppose we have a function $t: \mathbb{Z}_{2}^{n} \rightarrow\{0,1\}$ where

$$
\operatorname{Pr}\left[r \varepsilon \mathbb{Z}_{2}^{n}: t(r)=\langle x, r\rangle\right] \geqslant \frac{3}{4}+\varepsilon
$$

We show that we can learn x by evaluating t on carrefully-choren points.
Similiur to before, t could be wrong on e_{1}, \ldots, e_{n}. Need evaluation points to be radon.
Sample $r \stackrel{R}{\mathbb{Z}} \mathbb{Z}_{2}^{n}$. and evaluate t at r and $e_{1}+r$.
By assumption: $\operatorname{Pr}[t(r)=\langle x, r\rangle] \geqslant \frac{3}{4}+\varepsilon$
$\operatorname{Pr}\left[t\left(r+e_{1}\right)=\left\langle x, r+e_{1}\right\rangle\right] \geqslant \frac{3}{4}+\varepsilon \quad$ (since $r+e_{1}$ with $r \in \mathbb{Z}_{2}^{n}$ is unitom)
But these events are not independent: inputs are correlated!
Consider the complements: $\operatorname{Pr}[t(r) \neq\langle x, r\rangle]<\frac{1}{4}-\varepsilon \quad \frac{1}{4}-\varepsilon \Rightarrow$ By union bound:

$$
\begin{aligned}
\left.\operatorname{Pr}\left[t\left(r+e_{1}\right) \neq\left\langle x, r+e_{1}\right)\right]<\frac{1}{4}-\varepsilon \quad \begin{array}{rl}
& \operatorname{Pr}[t(r) \neq \\
& \left.\langle x, r\rangle \text { or } t\left(r+e_{1}\right) \neq\left\langle x, r+e_{1}\right\rangle\right] \\
& <\frac{1}{2}-2 \varepsilon<\frac{1}{2}
\end{array}\right)
\end{aligned}
$$

Thus, with prob. at lear $\frac{1}{2}+2 \varepsilon, t(r)=\langle x, r\rangle$ and $t\left(r+e_{1}\right)=\left\langle x, r+e_{1}\right\rangle$
Set $z=t(r)+t\left(r+e_{1}\right)$
If $t(r)=\langle x, r\rangle$ and $t\left(r+e_{1}\right)=\left\langle x, r+e_{1}\right\rangle$,

$$
t\left(r+e_{1}\right)-t(r)=\left\langle x, r+e_{1}\right\rangle-\langle x, r\rangle=\left\langle x, e_{1}\right\rangle=x_{1}
$$

Idea: Sample k independent pairs $\left(r_{i}, r_{1} \oplus e_{1}\right)$ for $r!\mathbb{R}^{R} \mathbb{Z}_{2}^{n}$ and compute estimates z_{1}, \ldots, z_{k}
Take the first bit \hat{x}_{1} to be Majority $\left(z_{1}, \ldots, z_{k}\right)$
Repeat this procedure to obtain estimates $\hat{x}_{2}, \cdots, \hat{x}_{n}$. Output $\hat{x}_{1} \hat{x}_{2} \cdots \hat{x}_{n}$.
Analysis will use a Chemoff bound. Simple version for our setting:
Let $X_{1}, \ldots, X_{k} \in\{0,1\}$ be independent random variables where $\operatorname{Pr}\left[X_{i}=y\right] \geqslant \frac{1}{2}+\varepsilon$. Then,

$$
\operatorname{Pr}\left[\operatorname{Majojiry}\left(X_{1}, \ldots, X_{k}\right) \neq y\right] \leqslant 2 e^{-2 \varepsilon^{2} k}
$$

In particular, if $\varepsilon=0(1), \operatorname{Pr}\left[\operatorname{Majoiity}\left(x_{1}, \ldots, x_{k}\right) \neq y\right] \leqslant 2^{-O(k)}$ (w)en $k=O(n)$)
for each bit of x
By the Chemoff bound, $\tilde{x}_{1}=x_{1}$ with probability $1-$ neg (n). Repeating this n tires yields the desired result.
Total evaluations of $t: O\left(n^{2}\right)$
2. Our setting is not quite this:

$$
\operatorname{Pr}[\underline{x, r} \underbrace{R}\{0,\}^{n}: A(f(x), r)=\langle x, r\rangle] \geqslant \frac{3}{4}+\varepsilon
$$ probability.

randomness taken over both x and r while above analysis only looks at r.
Let's say an x is "good" if

$$
\operatorname{Pr}\left[r \in\{0,1\}^{R}: A(f(x), r)=\langle x, r\rangle\right] \geqslant \frac{3}{4}+\frac{\varepsilon}{2}
$$

If x is "good", then can recover x using above algorithm.
How many x^{\prime} 's are good? If $\operatorname{Pr}\left[x^{R}\left\{0,13^{n}: x\right.\right.$ is "good" $]$ is non-negligible, then we have proven the claim. Algorithm B runs above decoder on A and recovers x whenever x is good, which happens with non-neglegible probability.

If A succeeds on $\left(\frac{3}{4}+\varepsilon\right)$-fraction of x 's, cannot have "too many" bad $x^{\prime} s$. (Averaging argument). Suppose δ fraction of x 's are bad. Then, probability of A succeeding over choice of $x, r \&\left\{0,13^{n}\right.$ is at mort

$$
\begin{aligned}
& \delta\left(\frac{3}{4}+\frac{\varepsilon}{2}\right)+(1-\delta) \\
= & 1-\frac{\delta}{4}+\frac{\delta \varepsilon}{2}
\end{aligned}
$$

Require that $1-\frac{\delta}{4}+\frac{\delta \varepsilon}{2} \geqslant \frac{3}{4}+\varepsilon \Rightarrow 1-\delta+2 \delta \varepsilon \geqslant 4 \varepsilon$

$$
\begin{aligned}
& \Rightarrow 1-\delta+2 \delta \varepsilon \geqslant 4 \varepsilon \\
& \Rightarrow \delta(1-2 \varepsilon) \leqslant 1-4 \varepsilon \Rightarrow \delta \leqslant \frac{1-4 \varepsilon}{1-2 \varepsilon}
\end{aligned}
$$

Condusion: At most constant fraction is "bad" so inversion will succeed on constant fraction of inputs.
HW3: Show how to go from $\frac{3}{4}+\varepsilon$ to $\frac{1}{2}+\varepsilon$ for constant $\varepsilon>0$

