Thus far, se have assumed that parties have a shared key. Where does the shared key come from?
Can we do this using the tools we have developed so far?

So far in this course:

Can we show OWFs (or even OWPs) \Rightarrow key agreement?
\Rightarrow authenticated encryption
Key agreement:
Alice \qquad Bob

Merkle puzzles: Suppose $f: x \rightarrow y$ is an infective one-way function
Alice
Bob
$x_{1}, \ldots, x_{n} \leftarrow x$
$i \stackrel{R}{R}[n]^{n}$
find x_{i} such that $f\left(x_{i}\right)=y_{i} \quad$ [solve the "puzzle"]
 derive a bey k from x_{i} (eg., using hard-core bit or hash the input)

Suppose it takes time t to solve a puzzle. Adversary needs time $O(n t)$ to solve all puzzles and identify key. Honest parties work in time $O(n+t)$.

Only provides linear gap between honest parties and adversary

Can we get a super-polynomial gap just using OWEs?
Can we get a super-linear gap just using OWEs?

Very difficult! [Impogliczzo-Rudich]
Very difficult! [Barak-Mahmoody]
A positive result will require non-black-box techniques.

Impagliazzo-Rudich: Proving the existence of key-agrement thant mates black-bor use of $O W P$ s implies $P \neq N P$.
Intuition: Black-bor construction means key-agreement proton only needs oracle access to one-way permutation ((does not depend on the code)

- Namely, given OWP f, there is a key-agreement protocol π^{f} that is a key-agreement protocol (and security reduction abs uses f as black box)
- In a world where $P=N P$, secure hey agreement is impossible
(intuition: eavesdropper can guess internal state of ore of the parties) construction Π can make oracle gamins to f (only way to :interact with f is through pries)
- Impossibility holds even if parties have access to a random permutation oracle

- without loss of generality, suppose Alie/Bob may ore query to H and then send a message and overall proton is n rounds
- Observation: if Alice queries H on X, but Bob does not, then secret canons depend on x (since Bob's vies is essentially independent of $H(x)$).
- to break key agreement, adversary has to guess intersection queries made by both Alice and Bob
- on each round, adversary samples many executions of protocol that is consistent with Alice's/Bob's communicication transcript (and previous simulated queries)
-[IR89]: with high probability, adversary will identify all intersection grues made by Alice and Bob \Rightarrow breaks key exchange
- In a world with a random permutation oracle, ove-way permutations exist unconditionally
\rightarrow And if there was a black-box construction of key exchange from OWP, then secure key exchange is also possible in this model $\Rightarrow P \neq N P$.
- Condusion: Proving a statement like $O W P / O W F \Rightarrow$ secure key exchange will prove that $P \neq N P$
- This is an example of a black-box separation.

Open Problem: Secure key exchange via non-black-box use of OWFs/OWPs?

- Black-box separations also known for many other notions:
e.g., Simon: black-bot separation bevan one-way permutations and CRHFS

Implication of black-box separations: Constructing secure key agreement will require more than just ore-way functions \rightarrow Distinction between Minierypt and Cryptomania in "Impagliazzo's five world,"

We will turn to algebra/number theory for new sources of hardness to build ky y agreement protocols.
Definition. A group consists of a set \mathbb{G} together with an operation $*$ that satisfies the following properties:

- Closure: If $g_{1} g_{2} \in \mathbb{G}$, then $g_{1} * g_{2} \in \mathbb{G}$
- Associativity: For all $g_{1}, g_{2}, g_{3} \in \mathbb{G}, g_{1} *\left(g_{2} * g_{3}\right)=\left(g_{1} * g_{2}\right) * g_{3}$
- Identity: There exists an element $e \in \mathbb{G}$ such that $e^{*} g=g=g * e$ for all $g \in \mathbb{C}$
- Inverse: For every element $g \in \mathbb{G}$, there exists an element $g^{-1} \in \mathbb{C}$ such that $g^{*} g^{-1}=e=g^{-1} * g$

In addition, we say a group is commutative (or abelizn) if the following property also holds:

- Commutative: For all $g_{1}, g_{2} \in \mathbb{B}, g_{1} * g_{2}=g_{2} * g_{1}$

Notation: Typically, we will use "." to denote the group operation (unless explictly specified otherwise). We will write g^{x} to denote $\underbrace{g \cdot g \cdot g \cdots g}_{x \text { times }}$ (the usual exponential notation). We use " 1 " to denote the multiplicative identity

Examples of groups: $(\mathbb{R},+)$: real numbers under addition
$(\mathbb{Z},+)$: integers under addition
$\left(\mathbb{Z}_{p},+\right)$: integers modulo p under addition [sometimes written as $\left.\mathbb{Z} / p \mathbb{Z}\right]$ here, p is prime
The structure of \mathbb{Z}_{p}^{*} (an important group for cryptography):
$\mathbb{Z}_{p}^{*}=\left\{x \in \mathbb{Z}_{p}\right.$: there exists $y \in \mathbb{Z}_{p}$ where $\left.x y=1(\bmod p)\right\}$
τ the set of elements with multiplicative inverses modulo p

What are the elements in \mathbb{Z}_{p}^{*} ?
Bezout's identity: For all pasitve integers $x, y \in \mathbb{Z}$, there exists integers $a, b \in \mathbb{Z}$ such that $a x+b y=\operatorname{gcd}(x, y)$.
Corollary: For prime $p, \mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$.
Proof. Take any $x \in\{1,2, \ldots, p-1\}$. By Bezout's identity, $\operatorname{gcd}(x, p)=1$ so there exists integers $a, b \in \mathbb{Z}$ where $1=a x+b p$. Modulo p, this is $a x=1(\bmod p)$ so $a=x^{-1}(\bmod p)$.

Coefficients a, b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm:
Euclidean alogithm: algorithm for computing $\operatorname{ged}(a, b)$ for positive integers $a>b$:
relies on fact that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a(\bmod b)$:
to see this: take any $a>b$
\rightarrow we can write $a=b \cdot q+r$ where $q \geqslant 1$ is the quotient and
$0 \leqslant r<b$ is the remainder
$\rightarrow d$ divides a and $b \Longleftrightarrow d$ divides b and r

$$
\rightarrow \operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)=\operatorname{gcd}(b, a(\bmod b))
$$

gives an explicit algorithm for computing ged: repeatedly divide:

$$
\begin{array}{lll}
\operatorname{gcd}(60,27): \quad 60=27(2)+6 & {[q=2, r=6] \leadsto \operatorname{gcd}(60,27)=\operatorname{gcd}(27,6)} \\
27^{2}=6(4)+3 & {[q=4, r=3] \leadsto \operatorname{gcd}(27,6)=\operatorname{gcd}(6,3)} \\
6^{4}=3(2)+0 & {[q=2, r=0] \leadsto \operatorname{gcd}(6,3)=\operatorname{gcd}(3,0)=3}
\end{array}
$$

"rewind" to recover coefficients in Bezant's identity:

Iterations needed: $O(\log a)$ - ie, bittength of the input [worst case inputs: Fibonoci numbers]

Implication: Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)

