- In the secret-key setting, we distinguished between semantic security and CPA-security. Here, this is <u>unnecessary</u> since semantic security => CPA security [means that public-key encryption must be randomized!]
 - > Intuitively: adversary can encrypt messages on its own (using the public key)
 - Formally: Follows from a hybrid argument

adversary	(1) (1) (1) (1)	challenger $\int (pk, sk) \leftarrow Setup(1^{2})$	adversary	$\xrightarrow{m_{0}^{(i)}}, \overset{m_{1}^{(i)}}{\longrightarrow}$	challenger [(pk, sk) ← Setup(12)	adversary	$\xrightarrow{m_{0}^{(i)}}, \xrightarrow{m_{i}^{(i)}} \rightarrow$	chalkerger ∫(pk, sk) ← Setup(1
	$\xrightarrow{ n_{e}^{(z)}, m_{e}^{(z)} }$			$\underbrace{\begin{pmatrix} c_1 \\ m_0 \end{pmatrix}}_{(2)} \underbrace{m_1^{(2)}}_{(2)}$			(a)	
							m(@) m(@)	
 b= 0	Ealways encrypt	mol		Internediate		——————————————————————————————————————	= 1 [always en	стурt m,]

- Total of Q-1 intermediate distributions
 - L> it distribution and (it 1)st distribution identical except on (mo, m(i)), challenger encrypts

experiments

- ms in distribution is and me in distribution it 1
 - these two distributions are indistinguishable by <u>semantic security</u> (in the reduction, the encryptions of the other messages (index # i) can be constructed using the public key (and do not depend on the challenger's choice bit)]
 - L> "If an adversary can distinguish endpoints (b=0, b=1), then it must be able to clistinguish a pair of intermedicate distributions [by triangle imaguality]
- . semantic security => every poir of distributions is competationally indistinguishable => CPA - security

PKE from DDH (ElGamal): Let G be a group with generostor g and prime order p

Recall Diffic-Hellman key exchange:
Alice
$$x$$
 Bob $Idea: Alice uill publish $h = g^{x}$ as her public key
 $x^{z}z_{p} \xrightarrow{a} \xrightarrow{a} y^{z}z_{p}$
Bob encrypts by choosing fresh share g^{3} and uses g^{x3} to
 $g^{x3} \xrightarrow{g^{x3}} g^{x3}$
Security parameter dictates what group is used (eg. P-256 P-384 P-3
 $g^{x3} \xrightarrow{g^{x3}} g^{x3}$
Setup $(x^{2}): x \stackrel{p}{\ll} Z_{p}$ pk: h $M = G$
shared key: g^{x3}
 $Encrypt (p^{k}, m): y \stackrel{p}{\ll} Z_{p}$
 $c \leftarrow (g^{3}, m \cdot h^{3})$
Decrypt $(s^{k}, c): m \leftarrow c_{1}/c_{x}^{x}$
 $C$$

Security: If DDH halds			cure,	
Prof. Consider following	tion games:	Peson2		و <i>رومی</i> و ا
adversory	<u>challenger</u> <u>pk</u> (pk,sk) =	· •	adversary	<u>challenger</u>
	(gk,sk) =	- Setup(I')	pk	(pk,sk) ← Setup(1 ²)
	$ \underbrace{M_{\bullet},M_{1}}_{M_{\bullet}} \rightarrow (C_{\bullet},C_{\iota}) $	< Evcrypt(pk, mb)	~ pk	
	((₀ , c,)		(co, c.	،>) د, د, ۴ €
↓ 1'650Å	<u>د (دہ</u> در)			
B C (-) V			β ε ξαι ¹ ζ	
<u>Claim</u> : these two	games are indistinguis	shable under DOH	adverso	ry's advantage in guessing b
	re exists efficient A			0 have since (co, Ci)
(w, C,) ← 7	Encrypt (pk, m) from	(ہے, د،) 🖗 🕼 . اک	use is in	ndependent of (mo, mi) ?
A to bree	ak DDH: $(30^{11}, 3^{10}, 1^{10})$ $\frac{3^{10}}{2^{10}}$ $(3, 3^{10}, 3^{10})$ $(3, 3^{10}, 3^{10})$ $(3, 3^{10}, 3^{10})$	۶ (o, l)		
<u>A</u>	lgarithm B	DDH challenger		
Algorithm A pk=	χ ^x (9,3 ^x , 9 ^ö , τ)	x,y, 2 ∉ Zp		
- m		b=0; 1 ← 3, a b=1: T ← 3 [€]		
2. P. C 101. 1				
<u>Observe</u> : X is a	withow over Zp so	gx is a property-gen	rated public key (for ElGa	mal)
		U) which is the output o	
	•		ribution where A sees E	
ד ה	$r = q^2$, then (q^3, q^2) .	m) is uniform over	² (Since y, 2 are sample	d independently of each other and
	of m) — this is ex	eactly the distribution	where A sees (co, c,) A	Ĝ /
	shing advantage of B:			
Equivalent view: U	when DOH, gro looks	uniform even given a	, gr, go, so an ElGanal cip	iertext looks indistinguisheble (to
	n efficient adversary)			0
		π		
What if we want to enco	rypt longer messages?	for messages that is	not a group element]	
- Hybrid encryption (key		5		- called key encapsulation
	to encrypt a secret	key	PKE. Encrypt (pk, k)	"header" [slocs]
	using secret key + au		J AE. Encrypt (k, m)	"poybaol" [fast]
- How to derive key f				secret-key operations much much
	cchange: hash the gr	up element to a hit	-string (symmetric key)	faster than public-key operations!
	Goumal : Encrypt (pk, M		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		c = (gð, m ⊕ H	(a, h, að, h ^ð))	
	is before, can also celu			
	as before, can also rely CDH + ideal hash fun	ctions (pullow) +	: 6" -> fo,15	
	coal imply the	orade)		

Vanilla ElGanal described above is not CCA-secure!

Ciphertexts are malleable: given ct = (g³, h³·m), can construct ciphertext (g³, h³·m·g) which decrypts to message m·g L> directly implies a CCA attack

Several approaches to get CCA security from DH assumptions:

- Cramer-Shoup (CCA-security from DDH) based on hash-proof systems We do not know of any groups where CDH - Fujisaki-Okamoto transformation (using an ideal hash function + CDH) believed to be haved, but interactive CDH - Make stronger assumption (interactive CDH + use ideal hash function): CDH is easy. CDH is hard even
 - Setup (1^{n}) : $\chi \stackrel{e}{=} \mathbb{Z}_{p}$ pk: h also called strong DH assumption h $\in g^{n}$ sk: χ - Symmetric authenticated = Encrypt (pk, m): $y \stackrel{e}{=} \mathbb{Z}_{p}$ k $\in H(g, g^{n}, g^{n}, h^{n})$ ct' $\leftarrow Enc_{AE}(k, m)$ = $C \leftarrow (g^{n}, ct')$ = $Decrypt (sk, c): k \leftarrow H(g, g^{n}, c_{0}, c^{n})$

Essentially ElGanal where key derived from bosh function

 $m \leftarrow Dec_{AE}(k, c,)$