
Diffie-Hellman key - exchange is an anonymous key - exchange protocol : neither side knows why they are talking to

↳ vulnerable to a
" man-in-the-middle

"

attack

Alice Bob_ Alice Eve Bob Observe Eve can

runs ⇐ now decrypt all
of the messages← É { between a,.ae and

✓ I ✓ Bob and Alice +Bob

gxy got gaz gym
↳

gXZz

£

got' hare ne idea !

What we require : Etat key - exchange (not anonymous) and relies on a root of trust leg, a certificate authority)
↳ On the web

,
one of the parties

will authenticate themself by presenting a certificate

To build authenticated key - exchange, we require more ingredients
- namely , an integrity mechanism [e.g., a way to bind a

message to a sender - a " public-key MAC
"
or dÑ"%"+"#% will revisit when discussing the TLS protocol

Digital signature scheme : consists of three algorithms :
-

Setup (E) → (vk.sk) : Outputs a verification key vk and a signing key sk
-

Sign Csk , m) → 0 : Takes the signing lay sk and a message m and outputs a signature 0
-

V4 (vk.no)→ 0/-7 : Takes the arficat.in lay vk
,
a message m ,

and a signature 0, and outputs a bit 0/1

Two requirements :
-

Correctness : For all messages me M ,
(vk.sk)← KeyGen (17 , then

Pr [Vñfy(vk, m , sign(skim)) = I] = 1 . IHonestly -gated signatures always_ verify]
-

Untorgeabieity : Very similar to MAC security . For lal efficient adversaries A, SigAdv [A]=Prfw= -7] =neg1ÉA, where
W is the output of the following experiment :

ad→ the

|(vk.sk/c-KeyGenC1a)X#ignskmG(m*
,
0*1

Let Mi
,
. . .

, ma be the signing queries the adversary submits to the challenger Then, W = 1 if and only if :

Verify lvk , m*, 0*1=1 and m* ¢ { m , , . . . ,
ma}

Adversary cannot produce a valid signature on a new_ message .

Exact analog of a MAC (slightly weaker unforgeability : require adversary to not be able to forge signature on new message)
↳ MAC security required that no forgery is possible on any message [needed for authenticated

encryption] digital signature elliptic-carve } standards (widely used
g)
algorithm
µ

DSA on the web - e.g., TLS)

It is possible to build digital signatures from discrete log based assumptions (DSA, ECDSA)
↳ But construction not intuitive until we see zero knowledge proofs
↳ We will first construct from RSA (trapdoor permutations)

We will now introduce some facts on composite- order groups :

Let N= pq be a product of two primes p , q. Then
, ZN

= {0,1 , - -
-

,
N - I } is the additive group of integers

modulo N
.
Let ZÑ be the set of integers that are invertible (under multiplication) modulo N

.

X E 2nF if and only if gcd (X , N)
= 1

Since N=pq and
p, q are prime, gcdtx, N) = 1 unless ✗ is a multiple of p or q:

IIÑI = N - p
-

q +1
=

pq
-

p
-

q + I
= (p

- 1) (g- 1)
= 41N)
←
Euler's phi function

Recall Lagrange's Theorem : (Euler's totient function)
for all ✗ C- ZÑ : ✗

%)
= 1 (mod N) [called Euler's theorem

,
but special case of Lagrange's theorem]

←
important :

"

ring of exponents
"

operate modulo 61N) = (p- 1) Iq- 1)

Hard problems in composite - order groups
:

-

aEÉng : given N=pq where
p
and q are sampled from a suitable distribution over primes, output p, q

-

comp-utinyt.si Sample random ✗ *ZÑ .
Given y=X

>
(mod N)

, compute ✗ (mod N)
.

↳ This problem is easy in 2¥ (when 3 t
p
- 1)

. Namely , compute 3
"
(mod p

- 1)
, say using Euclid's algorithm , and

then compute y
"

lmodp) = (Xs)
"

(modp) = ✗ (mod p) .
↳

Why does this procedure not work in 2nF
.

Above procedure relies on computing 3-1 (mod 12nF 1) =3
" (mod 91nA

But we do not know 91N) and computing 91N) isashardas factoring N . In particular, if we
know N and 91N)

,
then we can write

{ N=pq [both relations hold over the integers]
41N) = (p- 1) Cq

- 1)

and solve this system of equations over the integers (and recover p, g)

Hardness of computing cube roots is the basis of the RSAass.am/otion-:
distribution over prime numbers .

RS-Aassump-t.no. Take p, q
← Primes(1 and set N=pq .

Then
,
for all efficient adversaries A

,

Pr/✗EZE ; y
← AIN

,
×) : y

'
= ×] = neglti)
←

more generally, can replace 3 with
any e where gcdle.cl/NH=1
It

Hardness of RSA relies on 91N) being hard to compute , and thus
,
on hardness of factoring common choices :

(Reverse direction factoring ?⇒ RSA is not known) e =3

e = 65537

Hardness of factoring / RSA assumption : OT%Ñ)
- Best attack based on general number field sieve (GNFS) - runs in time ~ 2

(same algorithm used to break discrete log over Zp*) large key -sizes and computational
-

For 112- bits of security , use RSA -2048 (N is product of two 1024 - bit primes)# cost ¥µ¥d%§IY¥¥
128 - bits of security, use RSA -3072

-

Both prime factors should have similar bit- length (ECM algorithm factors in time that scales with smaller factor)

RSA problem gives an instantiation of more general notion called a trapdoorpermutation :

FRSA : 2nF → zn*

Frsa (x) : = Xe (mod N) where god IN, e) = 1
Given 61N)

, we can compute
D= e-

' (mod 91N))
.
Observe that given d, we can invert Frsa :

FRIA (X) : = xd (mod N)
.

Then
,
for all ✗ c- ZÑ :

Fria (Frsa (x)) = (✗e)
d

=
✗
ed 'nod IN"

= ✗
1
= ✗ (mod N)

.

rapfdoorp-ermuta-io.si A trapdoor permutation (TDP) on a domain X consists of three algorithms :
-Setup (E) → Cpp, +d) : Outputs public parameters pp

and a trapdoor td
-

Flpp , X) → y : on input the public parameters pp and input
X
, outputs y

C- ✗

-F-' Ctd , g) → ✗ : On input the trapdoor td and input y , output ✗ c- ✗

Requirements :
- Corsg : for all pp output by setup :

- Flpp, •) implements a permutation on X
.

-

F-
' Ltd

, Flpp, xD = ✗ for all ✗ c- X
.

-

Security : Flpp, •) is a one-way
function to an adversary who does not see the trapdoor)

Naive approach (common
" textbook

"

approach) to build signatures :

Let (F, F
-1) be a trapdoor permutation

- Verification key will be pp } to sign a message m , compute 0
← F-

' (td
,
m)

-

Signing key will be td to verify a signature ,
check m

É Flpp, 5)
Correct because :

F (pp , 0)
= Flpp, F-

' Ctd , m)) = m

secure because F-' is hard to compute without trapdoor (signing key) FACIE!

↳ This is not true ! Security of TDP just says that F is one-way .
One- wayness just says function is hard

to invert on a raridom input . But in the case of signatures , the imessage is the input. This is not only
not random, but in fact , adversarially chosen !

↳ Very easy to attack
.

Consider the 0-
query adversary :

Given verification key ✓k= pp, compute Flpp , 0) for any 0
C- ✗

Output m=F(pp, 0) and or

↳ By construction , 0 is a valid signature on the message me
,
and the adversary succeeds

with advantage 1 .
Textbook RSA signatures : [NEVER USE THIS !]

Setup 117 : Sample (N , e , d) where N=pq and ed = 1 (mod KIND

Output VK = (me) and sk = d } Looks tempting land simple) . . .=D

Sign look , m) : Output 0 ← Md (mod N) but totallybroken !

Verify (vÉFm, or) : Output 1 if oe = m (mod N)

n

Signatures from trapdoor permutations (the full domain hash) :
In order to appeal to security of TDP

, we need that the argument to F-
'

(td ,
•) to be random_

idea: hash the message first and sign the hash value (often called " hash- and- sign
")

↳ Anotit: Allows signing long messages (much larger than domain size of TDF)

FD#Éin :

-Setup (H) : sample (
pp, 1-d)

← Setup 117 for the TDP and output vk : pp.sk = td
-

Sign (skin) : Output 0 ← F-
' Ctd

,
Html)

-

Verify (vk.no) : Output 1 if F(pp, 0) = Hlm) and 0 otherwise

theorem
.
If F is a trapdoor permutation and H is modeled as a random oracle

,
then the full domain hash

signature scheme defined above is secure
.

.
Let A be an adversary for the FDH signature. We use A to build an adversary B for the trapdoor permutation

:

Algorithm B TDP challenger

lpp, +d) ← setup 117

Algorithm A ×*←RX
, y*← App , E)

,

<
PP É
>a

←Éa
t
1m¥ oxy
=

Claim. If A succeeds with advantage E , then it must query H on m* with probability E- 41×1
.

Poirot. Suppose A does not
query

m*
.

Now
,
(m*

,
0 *) is a valid forgery only if Flpp, 0*1 = H(m*) .

However
,
it A does not

query
m*
,
value of H(m*) uniform and independent of Flpp,o*) . Thus, A succeeds with prob . 41×1 .

Key# : If A succeeds
,
it will invert the TDP at HIM't)

.

[Algorithm B will
program

the challenge y for H(m*)]
.

But which query is
m* ?

Without loss of generality , assume A queries H on message m before making a signing query to m
.

Suppose A makes at most Q queries
to the random oracle

. Algorithm B will
guess which random oracle

query is m*.

1. Algorithm B samples it
I [Q]

.

2 . When A makes a query to H on input mi
-

sample ✗it ✗ . Let
y;
← Flppixi) } for all queries other than query

c-*

- Set Hfx;) to yi and remember the mapping mi ↳ (✗ i. y:)

On
query
it to H for message M:*

-

Respond with challenge y* .
When A makes a signing query for message m

:

- If m = m:* ,
then algorithm B aborts and outputs 1- .

- Otherwise
,
B looks

up mapping m t> (Xy) and replies with × .

3. If B does not abort and A outputs 1m¥ o*) where m* = m:*
,
B outputs 0

*
.

Otherwise
,
it outputs 1- .

By construction
,
all queries

to H are answered properly (since ✗ is uniform and F(pp,
-) is a permutation)

If A does not make signing query
on mix , then all signing queries answered perfectly

-

With probability E- 41×1
, algorithm A will

query H on m*
,
not make a signing query on m*

,
and forge a

signature on m*

-

With probability YQ
, mix

= m* in which case B perfectly simulates the signature security game
Algorithm B succeeds with probability at least YQ (e - YixD = % -

need (a).

Some (partial) attacks can

exploit very small public exponent

↳
(e-- 3)

Decaf : RSA- FDH signatures :

setup (1
') : sample modulus N

,
e
,
d such that ed = 1 (mod 41N)) - typically e = 3 or e= 65537

Output vk= IN , e) and sk = CN
,
d)

Sign (sk , m) : 0 ← Hlm)d [Here , we are assuming that H
maps into ZÑ]

Verify (vk.no) : output 1 if Hlm) = Oe and 0 otherwise

standard : PKCSI v1.5 (typically used for signing certificates)
↳ Standard cryptographic hash functions hash into a 256- bit space leg.. SHA -256) , but FDH requires fuIdomain_
↳ PKCS I v1.5 is a way to pad hashed message before signing:

/%FFFF-i.tt#--FODI/--m-/TTb+T-pad-t↳ message hash leg, computed using SHA -256)

digest info

(e.g., which hash functionwas used)

↳

Padding important to protect against chosen message attacks (e.g. , preprocess to find messages m , ,
ma
,
Ms where H (m) = Hlmz) - HIM)

(but this isnt a full- domain hash and cannot prove security under RSA
- can make stronger assumption . . .)

