
L-mportsignat-msi.LI f :X→ Y be a one-way function .

f length of message (m:{on}
")

-

Setup (1%1^1 : sample xi.b-XV-ic-GI.be {or} and compute yi.b-flxi.is/V-ic-EznI.bc- {on}
Set

gk =
✗
110 ✗20

- - i ✗no

pk = Y no Y 2,0 - - i Y-n.co

✗ in ✗2,1 - - - Xun Yin Yu - - - Yun

c-
{0115

-

Sign (sk, m) : Output (✗ um, ,
. . -

,
✗ n.mn)

-

Verify lvk, m , o) : Output 1 it Fi c- En] , ffxi.mil = Jimi and 0 otherwise.

theorem
.

It t is one-way , then Lamport signatures are secure one
- time signatures (i.e

,
where adversary can only make 1

signing query) .

Puff . Suppose A is a one-time signature adversary. We construct B for f as follows :

1. Algorithm A receives challenge y
=ftx) where ✗ I ✗ from challenger .

2. Choose i*← In]
,
5¥ {0,13 to

program challenge. Sample Xi,b EX , yi,b←f(✗ i. b) for (i.b) =/ (it.b*).

Set pk = (Yin , Yu , , - - - , Ymo , Yumi) .
3. Send pk to B. If B makes signing query on m

-
- mi . . . -, Mn

:

-

If mi*=b*
,
then abort .

-

Otherwise
, reply with (Xym

, ,
. . .

,
Xnimn) .

4. After A outputs a forgery (m*
,
0*1

,
if mF* f- b*

,
then abort. Otherwise

, output 0.* .

By construction
,
M,¥=b* with probability Yzn

.
Thus it A succeed with probability E

,
B succeeds with prob. %n .

f-
two signatures allow recovering secret key !

Limitations : One-time only [will fix later !]

Long public keys , secret keys , and signatures
-

Compose with CRHF to get poly (X)
- size parameters (independent of message length)

- Secret key can be derived from PRG leg, just ✗ bits)
- Public key can also be shortened to 27 bits (special case of Winternitz construction below)

Many Combinator:c tricks to reduce signature size :

- Winternite signatures
: use an iterated one-way function (f : ✗→ ✗ ,

f.
'd)
=f(fl -- - f- (x) - - -))
-

dcopies single hash !

key length" " "" " " " " "

?⃝
"" " "" """

f f f f f f f f f t

{ depth]
"" """ "" ""

t f f f f f f f f

corresponding to shaded

t f f f f f f f nodes

we say that Plm) £ Plm
') it each

t T T T f f f f

"

y component of Plm) is smaller than Plm')

SK = Xi Xie X} ✗y ✗s Xo X> ✗8) ⇒
signature on m can be used to

obtain signature on m
'

⇒
for security, just need a function P where

Plm) & Plm ')

Constructing Plm) :
III. if mam

'

,

- View me {0,15 as a number in base d : S
, , . . . ,

se (l ~
+

hog d)
then - m > - m '

.

-

Compute dl - (sit - - - + se) and write this in based : -4
,
. . .

, ten (l
'

~ logddl)
-

Output Is , , . . . , Se ,
-4
, . -

. ,te')

Suppose Plm) E Plm') for some mt m ! This means that si E si
,
. . -

,
set se

'

(and at least 1 strict)
.

Then
,
(s
,
+ - -

- + se) < (sit - - - + sé) . Thus
,
all- (sit - - - + se) > dl - (sit . - - + si) so there is at least

one ti where ti > ti
,
which is a contradiction .

Benefit of Winternitz construction : if messages are Ofx) bits and log 1×1 = 01×1 bits
,
then

✗ Using CRHF as out
-

Lamport signatures : / pH = 01×4 101=01×4
- Winternitz : lpk/ = 01×1 101=01×21,og d) } Very significant in practice

!

,pµ, , , ,
Lamport signatures (with 7=256) : 101=8 KB
Winternitz Id --2) : / pk1=32 bytes

to/ I 8.5143 } verificationneeds more
(D= 16) : 101=2.1 KB

hash evaluations

(D= 1024) : lol I 0.9 KB (very fast !)

One- time signatures are very fast (only needs symme-tr.cc#grapdy)
-

Very useful in streaming setting : each packet in stream should be signed , but expensive to do so

- Instead : include pk for one-time signature in first packet
sign first packet using standard signature algorithm (public key)
each packet includes OTS public key for next packet :

(Mo
,
Vk

,) , 0 → (m
, ,
Vkz)

,

0
,
→ (Mz

,
Vkz)

, 02
,

- -
.

T T y chaining} signaturessigned using signed using secret keysigned using secret key for vk
,

for vkz
many-time signature

stateful many
- time signatures from one-time signatures :

I-Aa: use a tree of one-time signatures :

only Uk needed
-

every node is associated with a key -pair forTvklskto verify signatures - an OTS scheme

- each signing key used to sign verification keysvko.sk./ \ vk.sk ,

of its children

~ /\
-

signing key for leaf nodes used to sign messages
- each leaf can only be used to sign one

message
- need to keep track of which nodesVkoo

,
skoovko.is/8,Vk,o,skioVkn , sky

have been used (stateful signature)

Eixample : signing message in using Cvkoo
,
skoo) :

-

Oo ← Sign look, vkollvk,) To verify , check
-

Ooo ← sign (sko , vk.co/lvkoi) Verify / vk, Vkollvk , %) = 1
-

0m ← Sign lskoo ,
m) Verify (vko ,

Ukoollvkoc
,
ooo) = I

- Output (vkollvk, , vkoollvkoi , Oo , Ooo, 0m) Verify lrkoo , m) = 1

Only root vk needed here , all other keys included in 0

Security (Intuition) : - Keys for internal nodes only used to sign single message (verification keys of children)
- As long as leaf node never reused

,
then leaves are also only used once

- Security now reduces to one- time security of signature scheme

How to remove state?
- consider a tree with 2

"
leaves and choose leaf at random for signing

- If we sign poly/7) messages , there will not be a collision in the leaf with 1 - neg/ 1×7 probability
- Pnblemi Signing key is exponential (need to store 012

") signing keys)
Solution : Derive signing keys from a PRF ! ✓

randomness to key -generation
algorithm(vki.sk;) ← KeyGen(1

"
; PRFCK.it)
I← node index

part of
signing key

sk.lv/Tf- - public vk
for main-line signature

To sign , choose random leaf
.

Derive all (skink :) along path . (sk ,
,

✓k,) ← Key Gen (1× ; PRFCK , 1))
Each node along

'

path signs ⑥ ?⃝
verification node associated \ / \with children

.

Leaf node signs④ ?⃝ ?⃝ ①
message .

Signature contains complete (skioyk,)
← Key Gen (it ; PRFCK , 10))

validation path from root

to leaf and signature of leaf on message .

Every internal node still
signs only one message .

