
Focus thus for in the course : protecting communication leg, message confidentiality and message integrity
)

Remainder of course : protecting computations

with surprising implicationsZeÉwdge : a defining idea at the heart of theoretical cryptography (DSAIECDSA signatures based on 2K !)
↳ Idea will seem very counter-intuitive

,
but surprisingly powerful

#
↳ Showcases the importance and power of definitions leg , "

What does it mean to know something ?
" )

we begin by introducing the notion of a
"

proof system
"

- Goda : A prover
wants to convince a verifier that some stated is true

e.g. ,
"

This Sudoku puzzle has a unique solution
"

} these are all examples of"

The number N is a product of two prime numbers p and q
"

statements

"

I know the discrete log of h base g
"

✓
the verifier is assumed to be an efficient algorithm

we model this as follows :

⇐(X)

gverif_
(X) X : statement that the

prover is trying to prove (known to both

poorer
and verifier) ↳ We will write L to denote the set of true

1T : the proof of ✗
statements (called a

"

language
"

)

Fb c- {0,13 - given statement ✗ and proof it , verifier decides whether to Ept or reject
Properties we care about:
-

Completeness : Honest prover should be able to convince honest verifier of true statements

Fx c- L : Pr [ IT ← PIX) : Vfx
,
a) = I ] = 1 [ Could relax requirement to allow for ]some error-Soundness : Dishonest

prover
cannot convince honest verifier of false statement

f ✗ ¢2 : Pr [ IT ←PIX) : ✓(X , T ) = I ]
< 13 Important : We are not restricting to efficient provers=

(for now)

Typically, proofs are
"

one-shot
" lie

, single message from prover to verifier) and the verifier 's decision algorithm is deterministic
↳ Languages with these types of proof systems precisely coincide with NP (proof of statement ✗ is to send NP witness w )

Recall that NP is the class of languages where there is a deterministic solution - checker :

£ C- NP <⇒ I efficiently - computable relation R s.-1 .

✗ c- I <⇒ 7- we {0,111×1 : Rtx ,w) = 1
T p T T

statement language witness NP relation

proot-ys-emfor-NP.pro#(X) verifier (x)

=
accept it Rtx ,w) = 1

Perfect completeness t soundness



Going beyond NP : we augment the model as follows

- Add randomness : the verifier can be a randomized algorithm
- Add interaction : verifier can ask " questions

"
to the prover

Interacivepnotsystems [Goldwasser - Miceli - Rackoff ] :
✓

efficient and

yp#µ
may be

inefficient randomized

Verifier randomness is critical
.
Otherwise

,
class of languages that

G- can be recognized collapses to NP
.

(see HWS).÷l÷
.

Interactive proof should satisfy completeness + soundness Cas defined earlier)

we define IP[ k] to denote class of languages where there is an interactive proof with Ko messages .

We write IP=IP[poly (n)] where n is the statement length
(i.e.

,
IP is the class of languages with an interactive proof with polynomial/ y - many rounds)

(verifier) (prover) f-
interactive proofs : verifier can rely on sent randomness

¥Ég : Arthur - Merlin proofs : verifier randomness is public and known to the prover

AM [k] : AM proof with Ko messages , class AM = AMG] (two- message public - coin proofs)
for constant K

,
AM [K] = AM = AM 12] ( constant message = 2 message)

↳
equivalent to BP - NP (class of languages with randomized reduction from 3- SAT)

B Er C ⇒ 7- efficient M : Tx : Prfclmlxl)=B(xD 743

Theon_em(#Éiper) : For every KEIN , IPCK] E AM[1<+2]
← randomized reduction

(Any private- coin interactive proof can be simulated by a public-coin interactive proof with two extra rounds)

What is the power
of IP ? BP . NP

I
-

For constant number of messages, seems comparable to NP ( IPCK] collapses to AM for constant k c- IN)
-

Going from constant to polynomial number of rounds is significant!

f- the set of languages that can be checked in polynomial space
¥m .

(Lund- For1-now - Karloff - Nisan
'

90
,
Shamir

'

90) IP = PSPACE
.

PIE .
We will prove a

weaker statement which illustrates all of the main techniques of the proof .
Let 3cal be the graph 3-coloring problem

- Given graph G- (V, E) , can we color the nodes so two adjacent nodes have different colors? [NP complete]

Let #301 be the problem of counting the number of 3-colorings of a graph . F CONP : problems where No instances

We will show #301 C- IP ( this implies for instance that co NP C- IP since #,Éd)
can be efficiently checked.

[if number of colorings
is 0

,

↳ # 3cal is #P - complete (Toda's theorem : PH EP
#P ) then G is a No instance]

↳
counting the number of witnesses to a polynomial-time relation

step-1-ri-hmti-at.in) : we will construct a polynomial PG that outputs 1 on a valid coloring and 0 otherwise .

- Let G= (V
,
E) be the graph. For each vertex u c- V

,
let Xu C- {0,1-2} be the associated color

.

/v1 -- n I E) =m



-

Consider the polynomial

É(x
, ,
.
. .

, xn) =
IT (✗a- xv)
(UNITE

Suppose (× , , . . . , Xn) is an invalid coloring. Then , for some (UN) C- F-
,
Xu = Xv

,
and PG (x , , .. . ,

Xn) = 0.

Suppose tx, , . .. , Xn) is a valid coloring . Then, for all (un) C- F-
,
Xu- ✗✓ C- { -2 , -1 , I

,
2 }

.

Define f : TR→ -112 be a polynomial where f-(01=0 and f- (2) = f- C-1) = f-G) =f(2) = 1
.

e.g., f- (X)
= -54×2-+4×4 satisfies the desired properties

IT f- (✗ u - Xr)- Define PG (Xi , - - - , ✗n) = (unite
[ I . . . I PG (× , , . .

.

,

Xn)
- For an invalid coloring : PG (X , , . . ,

✗n) = 0 =) Number of valid colorings : × , c- {one} xzc-so.i.is ✗nE{on,23

- For a valid coloring : PG (x, , . . - , Xn) =L

G-o.at : interactive proof to check sum of this polynomial
12=2 I . . . I PG (× , , . .

. ,Xn)
X, c- {011,23×240,52} ✗

n C-{0,12 }

±ep2_(Sumcheckprod) : Instead of working over TR
,
we will work over Rp (for prime p)

[if p
> 3h

,
this is guaranteed to be correct ]

Attach : Prover first computes polynomial
P
, (x) =3 8 - - - I Tlftxu- ✗v1 (*)

XzE{011,23 XzE{0,423 Xn C-{0,1/2} (UNITE

-This is a polynomial with degree d £4m since deg /f) = 4
-

Polynomial is univariate so can be described by at most 4Mt 1 coefficients

- Prover can send P
,
to verifier (4m + 1 coefficients) and verifier can check that

K =3 Pdx,)
✗, c- {0,423

This can be checked efficiently ! But what if prover cheats
and sends Ñ

,
that does not satisfy (*)

.

- Verifier needs to check validity of Ñ
.

Ida : sample r
F- Ip and ask prover

to
prove

that

~

P
, (g) = I - - . [ Palm

,
Xz
,
- . -

,
✗n)

✗2491,2) XnE{0.1.23

two observations : if (t) holds
,
then this is another instance of sumcheck with one fewer variable

if (t) does not hold , then this statement is false unless r is a root of

PT - P, . This polynomial is not identically zero
,

so it has at most

deg (Pi - Pi) £4m roots
.

Pr [r
,

E Zp : F.G)=P.ir,)] £47T
: with prob. 1-

"

Yp , prover now has to prove a false statement using sumcheck

continue this process
until we have a univariate polynomial :

F
n- ,
(rn-, ) = £ PG (ri

,
. .

-

,
rn-1

,
Xn)

XnE{air}

this is a polynomial of degree 4m in 1 variable so the verifier can directly check it



if the statement is false ⇒ verifier always rejects
otherwise

,
verifier always accepts

can now argue
soundness inductively :

- for false statement on n variables : verifier rejects false statement w-p. at least (1- "Yp)
"

- trivial for case where n = I

- for general case on n variables : rn# Zp is not a root of Pn -Ñn W.p. 1-
"

Yp
,
in which

case prover must show false statement on n- l variables

⇒ soundness ( 1-4%1/1- 4%1^-1=(1-4%1)
"

choose p > 4mn so soundness holds with constant prob . Boolean
formula?

f- thx , 7-xzttxz - - - Itxnofx , , . . . ,Xn )
Implication : #3.cot C- IP so CONP c- IP

.

Approach directly generalizes to the total quantities Boolean formula (TQBF) problem which is complete for PSPACE

⇒ PSPACE C- IP ⇒ IP = PSPACE ↳ arithmetic (with linearization)
,
followed by sumcheck

Samcheck protocols very useful for verifying polynomial-time computations with small communication

] key building block for
"

interactive proofs for muggles
"
[Goldwasser - Kalai - Rothblum' 08] succinct arguments

and verifiable computation


