Focus thus for in the course: protecting communication (ley., message confidentiality and message integrity)
Remainder of course: protecting computations
Zero-knaviedye: a defining idea at the heart of theoretical cryptography
\rightarrow Idea will seem very counter-intuitire, but surprisingly powerful
1 with surprising implications (DSA/ECPSA signatures bared on $Z K!$)
\rightarrow Showcases the importance and power of definitions (eeg., "What does it mean to know something?")
We begin by introducing the notion of a "proof system"

- Goal: A prover wants to convince a verifier that some statement is true
eeg., "This Sudoku puzzle has a unique solution"
"The number N is a product of two prime numbers p and q " \} ~ t h e s e ~ a r e ~ a l l ~ e x a m p l e s ~ o f ~ "I know the discrete log of h base g "

We model this as follows:

Properties we care about:

- Completeness: Honest prover should be able to convince honest verifier of true statements

$$
\begin{aligned}
& \forall x \in \mathcal{L}: \operatorname{Pr}[\pi \leftarrow P(x): V(x, \pi)=1]=1 \\
& \text { nest prover cannot consing honest verifier of fake statement }
\end{aligned} \quad\left[\begin{array}{c}
\text { Could relax requirement to allow for } \\
\text { some error }
\end{array}\right]
$$

- Soundness: Dishonest prover cannot convince honest verifier of fake statement

$$
\forall x \notin \mathcal{L}: \operatorname{Pr}[\pi \leftarrow P(x): V(x, \pi)=1]<1 / 3 \quad \text { Important: We are not restricting to efficient provers }
$$

(for now)
Typically, proofs are "one-shot" (ie, single message from prover to verifier) and the verifier's decision algorithm is deterministic
\rightarrow Languages with these types of proof systems precisely coincide with NP (proof of statement x is to send NP withes w)
Recall that NP is the class of languages where there is a deterministic solution-checter:
$\mathcal{L} \in N P \Longleftrightarrow \exists$ efficiently-computable relation R sit.

Proof system for NP:
prover (x)
verifier (x)

accept if $R(x, \omega)=1$
Perfect completeness + soundness

Going beyond NP: we auyment the model as follows

- Add randomness: the verifier can be a randomized algorithm
- Add interaction: verifier can ask "questions" to the prover

Interactive proof syotems [Goldwasser-Micali-Rackoff]:

efficient and randomized
verifier (x)

Interactive prost should satisty completeness + soundress (as detined earlier)

We define IP[k] to denote class of languages where there is an interactive proot with k messages.
We write $I P=\operatorname{IP}[p o l y(n)]$ where n is the statement length
(i.e., IP is the class of languages with an interactive proof with polynomially-many rounds)
(veritier) (prover) \square interactive proofs: verifier can rely on secret randompess
Special case: Arthur-Merlin proots: verifier randomness is public and known to the prover
$A M[k]: A M$ proot with k messages, class $A M=A M[2]$ (two-message public-coin proots) for constant $k, A M[k]=A M=A M[2]$ (constant message $=2$ message)
\longrightarrow equivalent to $B P \cdot N P$ (class of languages with randomized reduction fron 3-SAT)

Theovem (Goldwasser-Sisper): For every $k \in \mathbb{N}, \operatorname{IP}[k] \subseteq A M[k+2]$

$$
B \leqslant r c \nexists \text { efficient } M: \forall x: \operatorname{Pr}[C(M(x))=B(x)] \geqslant 2 / 3
$$

(Any private-coin interactive proot can be simulated by a pubic-csin interactive proof with two extra roudd)

What is the power of IP?

- For constant number of messages, seems comparable to NP (IP[k] collappes to AM for constant $k \in \mathbb{N}$)
- Going from constant to polynomial number of rounds is significant!'

Theovem. (Lund-Fortnow-Karloff-Nisan'90, Shamir'90) IP=PSPACE.

Proot (Idea). We will prove a weaker statement which illustrates all of the main techniques of the proot.
Let 3 ed be the graph 3 -coloving problem

- Given graph $G=(V, E)$, can we color the nodes so two adjacent nodes have different colors? [NP complete]

Let \#3col be the problem of counting the number of 3-colorings of a graph. \square coNP: problems where No instances
We will show \#3col $\in I P$ (this implies for instance that coNP $\subseteq I P$ since \#3col is coNP-hard) can be efficiently checked
\rightarrow \# 3col is \#P-complete (Toda's theorem: PH $\subseteq P^{\# P}$) $\left[\begin{array}{c}\text { if namber ot coloring is } 0 \text {, } \\ \text { then } G \text { is a No instamee }\end{array}\right]$
\longrightarrow counting the number of witnesses to a polynomial-time relation
Step 1 (Arithmetization): We will constract a polynomial P_{G} that outputs 1 on a valid coloring and 0 otherwise.

- Let $G=(V, E)$ be the graph. For each vertex $u \in V$, let $x_{u} \in\{0,1,2\}$ be the associated color.

$$
|V|=n \quad|E|=m
$$

- Consider the polynomial

$$
\hat{P}_{G}\left(x_{1}, \ldots, x_{n}\right)=\prod_{(u, v) \in E}\left(x_{n}-x_{v}\right)
$$

Supper $\left(x_{1}, \ldots, x_{n}\right)$ is an invalid coloring. Then, for some $(u, v) \in E, x_{u}=x_{v}$, and $P_{G}\left(x_{1}, \ldots, x_{n}\right)=0$.
Suppose $\left(x_{1}, \ldots, x_{n}\right)$ is a valid coloring. Then, for all $(u, v) \in E, x_{u}-x_{v} \in\{-2,-1,1,2\}$.

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ be a polynomial where $f(0)=0$ and $f(-2)=f(-1)=f(1)=f(2)=1$.
egg., $f(x)=\frac{5}{4} x^{2}-\frac{1}{4} x^{4}$ satisfies the desired propensities

- Define $P_{G}\left(x_{1}, \ldots, x_{n}\right)=\prod_{(u, v) \in E} f\left(x_{u}-x_{v}\right)$
- For an invalid coring: $P_{G}\left(x_{1}, \ldots, x_{n}\right)=0 \Rightarrow$ Number ot valid coloring: $\sum_{x_{1} \in\{0,1,2\}} \sum_{x_{2} \in\{0,1,2\}} \ldots \sum_{x_{n} \in\{0,1,2\}} P_{G}\left(x_{1}, \ldots, x_{n}\right)$
- For a valid coloring: $P_{G}\left(x_{1}, \ldots, x_{n}\right)=1$

Goal: interactive proof to check sum of this polynomial

$$
K=\sum_{x_{1}=\{0,0,2\}} \sum_{x_{2} \in\{0,1,2\}} \ldots \sum_{x_{n} \in\{0,1,2\}} P_{G}\left(x_{1}, \ldots, x_{n}\right)
$$

Step 2 (Sumcheck protocol): Instead of working over \mathbb{R}, we will work over \mathbb{Z}_{p} (for prime p)

$$
\left[\text { if } p>3^{n}\right. \text {, this is guaranteed to be correct] }
$$

Approach: Prover first computes polynomial

$$
\begin{equation*}
P_{1}(x)=\sum_{x_{2} \in\{0,1,2\}} \sum_{x_{s} \in\{0,0,2\}} \cdots \sum_{x_{n} \in\{0,1,2\}} \prod_{(u, v) \in E} f\left(x_{u}-x_{v}\right) \tag{*}
\end{equation*}
$$

-This is a polynomial with degree $d \leq 4 m$ since $\operatorname{deg}(f)=4$

- Polynomial is univariate so can be described by at most $4 m+1$ coefficients
- Prover can send P_{1} to verifier $(4 m+1$ coefficients) and verifier can check that

$$
K=\sum_{x_{1} \in\left\{_{0}, 2,2\right\}} P_{1}\left(x_{1}\right)
$$

This can be checked efficiently! But what it prover cheats and sends \tilde{P}, that does not satisfy ($*$).

- Verifier needs to check validity of \widetilde{P}_{1}.

Idea: sample $r \stackrel{R}{\leftarrow} \mathbb{Z}_{\rho}$ and ask prover to prove that

$$
\tilde{P}_{1}\left(r_{1}\right)=\sum_{x_{2}\{f=1,2\}} \ldots \sum_{x_{n} \in\{0,1,2\}} P_{G}\left(r_{1}, x_{2}, \ldots, x_{n}\right)
$$

two observations: if $(*)$ holds, then this is another instance of sumcheck with ore fewer variable if $(*)$ does not hold, then this statement is false unless r is a root of $\tilde{P}_{1}-P_{1}$. This polynomial is not identically zero, so it has at most $\operatorname{deg}\left(\tilde{P}_{1}-P_{1}\right) \leq 4 \mathrm{~m}$ roots.

$$
\operatorname{Pr}\left[r_{1}^{2} \not \mathbb{Z}_{p}: \tilde{P}_{1}\left(r_{1}\right)=P_{1}\left(r_{1}\right)\right] \leqslant \frac{4 m}{p}
$$

\therefore with prob. $1-\frac{4 \mathrm{~m}}{\mathrm{p}}$, prover now has to prove a fabre statement using sumntreck continue this process until we have a univariate polynomial:

$$
\tilde{P}_{n-1}\left(r_{n-1}\right)=\sum_{x_{n} \in\{0,1,2\}} P_{G}\left(r_{1}, \ldots, r_{n-1}, x_{n}\right)
$$

this is a polynomial of degree $4 m$ in 1 variable so the verifier can directly check it
if the statement is false \Rightarrow verifier always rejects
otheruise, verifier always accepts
can now argue soundress inductively:

- for false statement on n variables: verifier rejects false statement w.p. at least $(1-4 m / p)^{n}$
- trivial for case where $n=1$
- for general case on n variables: $r_{n} \leftarrow \mathbb{R} \mathbb{Z}_{p}$ is not a root of $P_{n}-\tilde{P}_{n}$ w.p. $1-4 m / p$, in which case prover must show false statement on $n-1$ variables \Rightarrow soundress $(1-4 m / \rho)(1-4 m / p)^{n-1}=(1-4 m / p)^{n}$
choose $p>4 m n$ so soundress holds with constant prob. formula?
Implication: \#3col $\in I P$ so coNP \subseteq IP. $\quad \checkmark \forall x_{1} \exists x_{2} \forall x_{3} \ldots \exists x_{n} \phi\left(x_{1}, \ldots, x_{n}\right)$
Approach directly generalizes to the total quantifies Boolean formula (TQBF) problem which is complete for PSPACE \Rightarrow PSPACE $\subseteq I P ~ \Rightarrow I P=$ PSPACE $\quad \rightarrow$ arithmetize (with linearization), followed by sumcheck
Sumcheck protocols very useful for verifying polynomial-time computations with small communication bey building bbok fur "interactive proofs for muggles" [Goldwasser-Kalai-Rothblum' 08] succinct arguments and veritiable computation

