
Consider following example: suppose prover
wants to convince verifier that N = pq where p, q are prime land secret)

.

prover
(N

, p , q)
verifier (N)

tf
I
accept if N=pq and reject otherwise

Proof is certainly complete and sound, but now verifier ate learned the factorization of N
...

(may not be
desirable if

prover was trying
to convince verifier that N is a proper RSA modulus (for a cryptographic scheme) wi¥reveay factorization in the process

↳ In some sense
,
this proof conveys information to the verifier [i.e

,
verifier learns something it did not know before seeing
the proof ]

Zledge : ensure that verifier does not learn anything (other than the fact that the statement is true)

H¥fiÉedge"? We will introduce a notion of a
"

simulator
.

"

for a language L

Definition. An interactive proof system (P
,
V>

✓

is zero- knowledge if for all efficient land possibly malicious) verifiers V5 there

exists an efficient simulator S such that for all ✗ c- L :

View
✓ * ( (P, V> (X))
I s (x)

-

random variable denoting the set of messages
sent and received by ✓* when interacting with the prover P on input ✗

What does this definition mean?

View
✓*
(P←✓* (X)) : this is what ✓* sees in the interactive proof protocol with P

S (X) : this is a function that only depends on the statement X
,
which ✓* already has

If these two distributions are indistinguishable, then anything that ✓* could have learned by talking to P, it could have learned

just by invoking the simulator itself, and the simulator output only depends on ✗
,
which ✓ * already knows

↳ In other words
, anything V* could have learned lie

, computed) after interacting with P, it could have learned without

ever talking to P !

Very remarkable definition !

f- can
in fact be constructed from OWFS

NÉE : Using cryptographic commitments
,
then every language L C- IP has a zero-knowledge proof system .

↳ Namely, anything that can be proved can be proved in zero- knowledge !

We will show this theorem for NP languages. Here it suffices to construct a single zero-knowledge proof system for an

NP-complete language. We will consider the language of graph 3- colorability.

3- colorable
←

not 3-colorable

⇐¥••I•.

£Éig : given a graph G , can you color the vertices so that no adjacent nodes have the same color?



✓cryptographic analog of a sealed "envelope
"

We will need a commitment scheme
.

A (non-interactive) commitment scheme consists of three algorithms (Setup , Commit , Open) :
-

Setup (E) → 0 : Outputs a common reference string (used to generate/ validate commitments) or
-Commit 10

,
m)→ (c.Tid : Takes the CRS o and message m and outputs a commitment c and

opening IT
-

Verify 10, me , T1 ) → 0/1 : checks if c is a valid commitment to m ( given a)

-ypicalsetup_ :
committer Verifier

o← setup (E)

←

(C,ñ)←Commit (o,m#

(sometime later)

→
can check that Verity (0, M ,

C
,
-11 ) = 1

Requirements : [see HW5 for construction from OWFS ]
- co_rÉ : for all messages m :

Pr for ← setup 117 ; (c.a) ← Commit (o
,
m) ; Verify 10, c. m , a) = 17=1

-

Hiding : for all common reference strings 0 C- {0,13
"

and all efficient A
, following distributions are computationally

bt{0,13indistinguishable :

chaltengertradversary

7-
/ { ↳⇒ ← comma gym ,,
←

+ -

b
'
C- {0,13

/Pr[ b' = I / b--0] - Pr[b' = 1lb = 1] / = neg/ IN

-

Binding : for a¥ adversaries A
,
it 0 ← setup (H) , then

Pr [ (mom ,
, c. top, ) ← A : Mo =/ m , and Verify (o, c.motto) = I = Verify (0,4m, ,ñ ,) ] = need (a)



A 2K protocol for graph 3- coloring:

✗
contains n nodes

,

m edges

TEY g-rerif.ir#- let Ki c- {on.23 be
e-

0 ← setup (tf)
a 3-coloring of G

- choose random permutation
IT ⇐ Perm[{0,423]

- for i C- In] :

(Ciii)← Commit (o
, k;)

µ
( i. j)
# F-

for random ri

-

reject it (ij) ¢ E# FÉÉ>

↳-
accept if Kit Kj and Ki

, Kj c- {011,23

Verify /o, Ci , Kip;) = I = Verify (0, Cj , Kj , Tj)
reject otherwise

Inti : Prover commits to a coloring of the graph
Verifier challenges prover to reveal coloring of a single edge
Prover reveals the coloring on the chosen edge and opens the entries in the commitment

Completeness : By inspection [ if coloring is valid, prover can always answer the challenge correctly ]

except with prob . I - need .

Soundness: Suppose G is net 3-colorable . Let Ki , . . - , Kn be the#ring the prover
committed to . If the commitment scheme is

statistically binding, 4 , . . . .cn uniquely determine Ki
, . . - ,
Kri

.
Since G is not 3-colorable

,
there is an edge (ij) C- E where

Ki = Kj or i ¢ {0,423 or g- ¢ {0,423 .
[otherwise

,
G is 3- colorable with coloring Ki

, . .
.

,
Kn

.
] Since the verifier chooses an edge

to check at random, the verifier will choose lisj) with probability YIEI
. Thus

,
if G is not 3-colorable

,

Prlverifier rejects ] 7 1¥
Thus

,
this protocol provides soundness 1- ¥1

.
We can repeat this protocol 011=1-14 times sequentially to reduce

soundness error to

Pr [ verifier accepts proof of false statement ] £ ( 1- ¥)
""
f e-

"⇒
= e-
m

[since I + ✗ set ]



III.: We need to construct a simulator that outputs a valid transcript given only the graph G as input .

Let ✓* be a (possibly malicious) verifier
.

Construct simulator S as follows :

1. Run ✓* to get 0
*

.

2. Choose Ki ← {0,423 for all i c- (n]
.

} simulator does not know coloring
Let Kim,

-f-Commit (Ot
,
K;) so it commits to a random one

Give (cc
, . . .,

Cn) to V7

3. ✓* outputs an edge lij) EE

4. If Kit Kj , then S outputs (ki
, Kj , tiiajl .

Otherwise
,
restart and try again (it fails 7 times

,
then abort)

simulator succeeds with probability 43 lover choice of Ki, . . . ,Kn) . Thus
, simulator produces a valid transcript with prob . 1- 3¥ = 1-

neg
/(1)

after 7 attempts . It suffices to show that simulated transcript is indistinguishable from a real transcript.

- Reader : prover opens Ki
, Kj where Ki

, Kj # {0.1/2} [ since prover randomly permutes the colors]
-

Simulation : Ki and Kj sampled uniformly from {0,523 and conditioned on Ki =/ Kj , distributions are identical

In addition
,
Li,j) output by V* in the simulation is distributed correctly since commitment scheme is computationally - hiding leg. ✓*

behaves essentially the same given commitments to a random coloring as it does given commitment to a valid coloring

If we repeat this protocol /for soundness amplification) , simulator simulate one transcript at a time

Summery : Every language in NP has a zero- knowledge proof (assuming existence of OWFS)

✓
recall : IPCK] E AM [ 1<+2 ]

Can be used to obtain 2K proof for IP :

(without loss of generality , suppose proof is public - coin
- e.g. , an Arthur - Merlin proof)

To construct 2K proof for £ c- IP
, proceed as follows :

1) Replace prover
's message with a computationally -hiding and statistical binding

commitment to message
2) Verifier just send its random coins as in the AM protocol
3) Prover proves

in zero
- knowledge at the very

end that the set of messages it committed to

would cause the verifier to accept
↳ this is an NP statement / witness is the commitment openings and messages,

relation checks

openings to commitment and that verifier accepts the transcript
]

Implication : Everything that can be
proven

(IP) can be proven in zero knowledge!


