(NIZK)				
Non-interactive zero-1	chousedye : Can we construct a zero-kno	whedge proof system wil	have the proof is a	single message from the
	prover to the verifier?.			
	prover (x, w)	vertier (x)	Why do we care	? Interaction in practice
		(is expensive!	
		V See 3		
		6 e (0 ₁ ()	languages 4	that can be decided by a
			Fandomized	polynomial time aborithm (whip)
Untortunately, NIZK	s are only possible for sufficiently eas	y languages (i.e., langua	ges in BPPJ.	
The simulator	(for 2K groperty) can essentially be	used to decide the	language	
.t x e	$L: S(x) \xrightarrow{\rightarrow} \pi$ and π should be a	ccepted by the verifier	(by ZK) (NIZ	K impossible for NP unless
îf X∉	$\mathcal{L} : \mathcal{S}(\mathbf{X}) \rightarrow \pi$ but π should not be	e accepted by verifier ((by soundness) J	NP S BPP (unlitedy!)
Impossibility results	tell us where to look! If we cannot	succeed in the "plain" ,	model, then move to	a different one:
Common rando	n/reference string (CRS) mode):		random oracle m	nodel:
	prover and	vertice have		-[«
	1 access to	shared randomness		
	Dure T Verifier (could be	a uniformly random	prover	-> verifier
	string or	a structured string)		
			· n	
in this modul,	Similator is allowed to choose (i.e., simul	inte The Choin	in this model, simulator	can position the condum
conjunction uset	. The proot, but soundness is defined with	n respect to an	Oracle Lagain, asymme	try between real prover and the
honestly-genero	ted CRS lasymmetry between the cas	publifies of the real	simulator]	
prover and t	he simulator]			
=> In both case	s, simulator has additional "power" that	n the real prover, which	is critical for enabling	NIZK constructions for NP.
In CRS model: (RS sampled from Setup (12)			
	Simulator is able to <u>choose</u> CRS			
	- Must be computationally indisting	vishable from real CRS	>	
	- Simulated CRS will typically have	e a simulation trapdoor	r that can be used	L to simulate proofs
	Real protocol: CRS is sampled by a	trusted party (esse	initial for soundness)	7
7000 - knowledge,	sous that a particular choice of	(CRS, TT) can be si	mulated given only th	e statement X
<u>_</u>			0 /	
To godan and	model: Simulator has ability to or	porting Coolans and	e - must exactly	simulate distribution of
-II MINDAY OVWOR		June , Manue Dr. Dr.		autority of the
			WIDEM OTICLE	outbur 2
can extend to N	LCK proots of knowledge			

Fiet-Shamir heuristic: NI2Ks in random oracle model

<u>Key idea</u>: Replace the verifier's challenge with a hush function $H: [0,1]^* \rightarrow \mathbb{Z}p$

Completess, zero knowledge, proof of knowledge follow by a similar analysis as Schnorr [will rely on random orack] Signatures from discrete log in RO model (Schnorr): - Setup: x & Zp

$$\begin{array}{c} & \sum_{k \in \mathcal{A}} \left(y_{k}, y_{k}, y_{k}, z_{k} \right) \\ & = \sum_{k \in \mathcal{A}} \left(y_{k}, y_{k}, z_{k} \right) \\ & = \sum_{k \in \mathcal{A}} \left(y_{k}, y_{k}, z_{k} \right) \\ & = \sum_{k \in \mathcal{A}} \left(y_{k}, z_{k} \right) \\$$

Security essentially follows from security of Schnorr's identification protocol (together with Fiat -Shewir) is a proof of knowledge of the discrete log (can be <u>extracted</u> from adversary)

Length of Schnorr's signature: Vk:
$$(g, h=g^{\chi})$$
 $\sigma: (g^r, c=H(g,h,g^r,m), z=r+c\chi)$ verification checks that $g^z=g^rh^c$
sk: χ
can be computed given
other components; so \Longrightarrow $|\sigma|=2\cdot|G|$ [512 bits if $|G|=2^{256}$]
do not need to include

But, can do better... Observe that challenge c only needs to be \$28-bits (the knowledge error of Schnorr is 1/c1 where C is the set of possible challenges), so we can sample a 128-bit challenge rother than 256-bit challenge. Thus, instead of sending (g^r, z) , instead send (c, z) and compute $g^r = \frac{g^2}{h}c^2$ and that $c = H(g,h,g^r,m)$. Then resulting signatures are $\frac{384}{t}$ bits 128 bit challenge c^2 256 bit group element

Important note: Schnorr signatures are randomized, and security relies on having good randomness

L> What happens if randomness is reused for two different signatures?

Then, we have

$$\begin{aligned} \sigma_1 &= \left(g_1^{\circ}, \ C_1^{\circ} \ H\left(g_1 \ h_1 \ g_1^{\circ}, \ m_1\right), \ z_1 = r + c_1 \times \right) \\ \sigma_2 &= \left(g_1^{\circ}, \ C_2 &= \ H\left(g_1 \ h_1 \ g_1^{\circ}, \ m_2\right), \ z_2 = r + c_2 \times \right) \end{aligned}$$

This is precisely the set of relations the knowledge extractor uses to recover the discrete log X (i.e., the signing key)!

Deterministic Schnorr: We want to replace the random value r ≥ Zp with one that is deterministic, but which does not compromise security → Derive randomness from message using a PRF. In particular, signing key includes a secret PRF key k, and Signing algorithm computes r ← F(k,m) and or ← Sign(sk,m ; r). → Avoids randomness reuse/misure valuensbilities.

ECDSA signatures (over a group & of prime order p):
- Setup:
$$\chi \in \mathbb{Z}p$$

 $\forall k: (J, h = g^{\chi})$ sk: χ deterministic function
- Sign (sk, m): $\alpha \notin \mathbb{Z}p$
 $u \leftarrow g^{\chi}$ $r \leftarrow -f(u) \in \mathbb{Z}p$
 $\sigma = (r, s)$
- Verify ($\forall k, m, \sigma$): write $\sigma = (r, s)$, compute $u \leftarrow \frac{H(m)/s}{2} \frac{V'/s}{r's}$, accept if $r = f(u)$
 $\psi k = h$
Correctness: $u = g^{H(m)/s} \frac{\Gamma/s}{h} = g^{H(m)+r\chi} \frac{[H(m)+r\chi]/s}{h} = g^{(H(m)+r\chi)/(H(m)+r\chi)} a^{-1} = g^{\alpha}$ and $r = f(g^{\alpha})$
Security analysis non-trivial: requires either strong assumptions or modeling G as an "ideal group
Signature size: $\sigma = (r, s) \in \mathbb{Z}p^2$ - for 128-bit Security, $p \sim \partial^{256}$ so $|\sigma| = 510$ bits (can we P-256 or Curve 25519)

An application of zero-knowledge proofs to encrypted voting (based on ElGamal) pk: g, h=gⁿ sk: x Suppose votes are 0/1. Parties encrypt vote tE \$0,13 as

But malicious voter can encrypt -1000: (g^r, h^r.g⁻¹⁰⁰⁰). <u>Solution</u>: require voters to provide ZK proof that encrypted vote (U,V) is valid: either (g, h, U, V) is a DDH tuple <u>OR</u> prove using Chaun-Pederson along with (g, h, U, V/g) is a DDH tuple <u>OR</u> proof construction (not discussed hure)

Basic approach generalizes to <u>arbitrary</u> ranges.

Foncier versions of these types of 2KPs are used in private telemetry system by Mozilla (Prio).

Identification protocol from discrete log:

> Can be made non-interactive via Fiat-Shamir

Correctness of this protocol follows from completeness of Schnorr's protocol

(Active) security follows from knowledge property and zero-knowledge

ightarrow Intuitively: knowledge says that any client that successfully authenticates must know secret χ

Zero-knowledge says that interactions with honest Client (i.e., the prover) do not reveal anything about χ

(for active security, require protocol that provides general zero-knowledge rather than just HVŽK)