Today: another abstraction to construct succinct arguments

- does not rely on random oracles (reeds a CRS instead)
- asymptotically shorter arguments : $\tilde{O}(\lambda)$ proofs for proving NP relations of size poly (λ)
- leads to the most compact SNAREs (pairing-based construction is 3 group elements ~ 128 bytes) (basis of Zercash protocol)

Starting point: different information-theoretic proof system

Linear PCP [Ishai-Kushilevitz-Ostroosky, 2007]:

verifier $(x) \quad$ verifier is given orate access to the linear PCP prof trade (eg., verifier submits a query vector $q \in \mathbb{\pi}^{m}$ and receives the response $\langle q, \pi\rangle \in \mathbb{F}$

Definition. A linear PCP for an NP language \mathcal{L} (with corresponding relation R) consists of two algorithms (P, V) with the following properties:
-Completeness: If $(x, \omega) \in R$, then if we set $\pi \leftarrow P(x, \omega)$:

$$
\operatorname{Pr}\left[V^{\langle\pi,\rangle}(x)=1\right]=1
$$

-Soundness: For all $x \notin \mathcal{L}$ and all $\pi^{*} \in \mathbb{F}^{m}$

$$
\operatorname{Pr}\left[V^{\left\langle\pi^{*},\right\rangle}(x)=1\right] \leqslant \varepsilon
$$

$\varepsilon_{\text {soundness error }}$
Constructing linear $P C P_{s}$ (for Boolean circuit satisfiability - let C be the cirait)

- Can instantiate using Walbh-Hudarmard coddle [Arora-Lund-Mottaoni-Sudan-Szgedy, 1992]
[3 queries, query length $m=O\left(|c|^{2}\right.$), soundness error $\varepsilon=2 /||\mathbb{F}|$]
- Can instantiate using quadratic span programs [Gemarro-Gentry-Paeno-Raykooa, 2013]
[3 queries, query length $m=O(|C|)$, soundness amor $\varepsilon=O(s) /|\mathbb{F}|$]
Several useful properties of these linear PCP constructions:
- Verifier is oblivious (ie., the queries do not depend on the choice of the statement)
- Veificication algorithm is a quadratic relation over the linear PCP responses [useful primarily for adieving pubic veritiabity]] (if $r_{1}=\left\langle\pi, q_{1}\right\rangle, \ldots, r_{k}=\left\langle\pi, q_{k}\right\rangle$, verifiers response is quadratic function in the variables r_{1}, \ldots, r_{k})

From linear PCPs to SNAREs: Suppose verifier in linear PCP system is oblivious. Then, we can generate the verifier's queries ahead of time (before the statement is known).

Key idea: generate the queries during setup:
Setup $\left(1^{\lambda}\right) \rightarrow(\sigma, \tau)$ where σ is the $C R S$ and τ is the verification state
Suppose we have a k-query linear PCP. Then:
Setup $\left(1^{\lambda}\right) \rightarrow(\sigma, \tau)$: generate queries $q_{1} \ldots, q_{k} \in \pi^{m}$ and linear $P C P$ verification state $\tau_{L P C P}$

$$
\mapsto \sigma=\left(q_{1}, \cdots, q_{k}\right) \text { and } \tau=\tau_{L P C P}
$$

Prover's operation: 1. Encode statement-witvess (x, ω) as linear $P C P \pi \in \pi^{m}$
2. Compute responses to verifier's queries $r_{1}=\left\langle\pi, q_{1}\right\rangle, \ldots, r_{k}=\left\langle\pi, q_{k}\right\rangle \in \mathbb{F}$
3. Proof consists of linear $P C P$ responses $r_{1}, \ldots, r_{k} \in \mathbb{F}$

Verifier runs verification procedure for underlying linear PCP (using r_{1}, \ldots, r_{k} and τ)

Problem: Prover can choose proof $\pi \in \mathbb{F}^{m}$ after seeing the verifier's queries \Rightarrow cannot appear to socundress of linear PCP!
Solution: encrypt verifier's queries with additively-homomopphic encryption scheme [suffices for desiguated-veritier SNARGs]

$$
\operatorname{Setup}\left(1^{\lambda}\right):(p k, s k) \leftarrow \operatorname{KeyGen}\left(1^{\lambda}\right)
$$

generate linear PCP queries $q_{1}, \ldots, q_{k} \in \mathbb{F}^{m}$ and $\tau_{L P C P}$ encrypt each component of the query vector let $c t_{i, j}$ for $i \in[k]$ and $j \in[m]$ be $c t_{i, j} \leftarrow \operatorname{Encrypt}\left(p k, q_{i, j}\right)$, and let $c t_{i}=\left(c t_{i, 1}, \ldots, c t_{i, m}\right)$ Output $\sigma=\left(c t_{1}, \ldots, c t_{k}\right)$ and $\tau=\left(s k, \tau_{L P c p}\right)$
To construct a proof, prover homomorphically computes

$$
c t_{i}^{\prime} \leftarrow \sum_{j \in[m)} \pi_{j} \cdot c t_{i, j}=\operatorname{Encrypt}\left(p k,\left\langle\pi, q_{i}\right\rangle\right)
$$

Verifier takes $C t_{1}^{\prime}, \ldots, C t_{k}^{\prime}$, decrypts the ciphertexts to obtain responses r_{1}, \ldots, r_{k} and applies linear PCP verification

Problem: Prover need not apply same linear function π to construct its queries
Solution: Introduce an additional consistency check
prover operates on queries q_{1}, \ldots, q_{k} and can compute
$\left.\begin{array}{c}r_{1}=\left\langle q_{1}, \pi_{1}\right\rangle \\ r_{2}=\left\langle q_{2},\right. \\ \left.\pi_{2}\right\rangle \\ \vdots \\ r_{k}=\left\langle q_{k}, \pi_{k}\right\rangle\end{array}\right\}$
not quite accurate since prover can connate
each response to be a linear function of all of
the query components - but same idea applies to
the general setting
useful trick: random linesity check - verifies chooses $\alpha_{1}, \ldots, \alpha_{k} \mathscr{R} \mathbb{F}$ and submits a query $q_{k+1}=\sum_{i \in(k)} \alpha_{i} q_{i} \in \mathbb{F}^{n}$ verifier additionally checks that $r_{k+1}=\sum_{i \in[(])} \alpha_{i} r_{i}$
observe: if prover uses the same π for all queries:

$$
\sum_{i \in[k]} \alpha_{i} r_{i}=\sum_{i \in[k]} \alpha_{i}\left\langle q_{i}, \pi\right\rangle=\left\langle\sum_{i \in[k]} \alpha_{i} q_{i}, \pi\right\rangle=\left\langle q_{k+1}, \pi\right\rangle
$$

if prover does not use the same π for all queries, then

$$
\sum_{i \in[k]} \alpha_{i} r_{i}=\sum_{i \in[k]} \alpha_{i}\left\langle q_{i}, \pi_{i}\right\rangle \quad \text { and } \quad\left\langle q_{k+1}, \pi_{k+1}\right\rangle=\sum_{i \in[k]} \alpha_{i}\left\langle q_{i}, \pi_{k+1}\right\rangle
$$

verier accepts only if

$$
\begin{aligned}
& \sum_{i \in[k]} \alpha_{i}\left\langle q_{i}, \pi_{i}\right\rangle=\sum_{i \in[k]} \alpha_{i}\left\langle q_{i}, \pi_{k+1}\right\rangle \\
& \Longleftrightarrow \quad \sum_{i \in[k]} \alpha_{i}\left\langle q_{i}, \pi_{i}-\pi_{k+1}\right\rangle=0
\end{aligned}
$$

\longrightarrow since $\alpha_{i} \stackrel{\&}{\leftarrow} \mathbb{F}$, and independent of $\pi_{1}, \ldots, \pi_{k+1}$, over the choice of α_{i}, this relation is satisfied with probability at most $\frac{1}{|F|=\mid}$
[Schwartz- Zipel lemma]
Problem: To appeal to soundness of linear PCP, we need to ensure that prover only implements linear strategy
Solution: Assume encryption scheme is "Imeer-only" (ie, only supports linear homomorphisms)
"Limear-only" (informally):
for all efficient adversaries A, there exists an extractor ξ where for any sequence of messages m_{1}, \ldots, m_{k} :

$$
\begin{array}{l|l}
c t_{i} \leftarrow \operatorname{Erccypt}\left(p k, m_{i}\right) \quad \forall i \in[k] & \\
c t^{\prime} \leftarrow A\left(p k, c t_{1}, \ldots, c t_{k}\right) & (\pi, b) \leftarrow \varepsilon\left(p k, c t, \ldots, c t_{k}\right)
\end{array}
$$

it follows that

$$
\operatorname{Decrypt}\left(s k, c t^{\prime}\right)=\sum_{i \in[k]} \pi_{i} m_{i}+b \in \mathbb{F}
$$

"any ciplertext that the adversary can compute can be explained by a linear function of the provided cipherertext"
Note: Not your typical cryptographic assumption (non-falsifiable)

- Typical cryptographic assumptions like factoring, DDH, LNE can be formulated as a game between a challenger and an adversary
- To break the linear-only assumption, need to exhibit some adversary such that there is no efficient extractor (can be very challenging!)

Putting the pieces together:
$\operatorname{Setup}\left(1^{\lambda}\right):(p k, s k) \leftarrow \operatorname{Key} \operatorname{Gen}\left(1^{\lambda}\right)$ generate public/prinate key for a linear-only encryption scheme compute linear $P C P$ queries q_{1}, \ldots, q_{k}, linear consistency check query q_{k+1} and linear PCP verification state $\tau_{L P C P}$ encrypt queries q_{1}, \ldots, q_{k+1} (component-wise) using linear-only encryption scheme to obtain encrypted queries $c t_{1}, \ldots, c t_{k+1}$
publish $\sigma=\left(p k, c t_{1}, \ldots, c t_{k+1}\right)$ and $\tau=\tau_{L p C P}$
$\operatorname{Prove}(\sigma, x, \omega)$: construct linear $P C P$ proof $\pi \in \mathbb{T}^{m}$ from (x, ω)
homomorphically compute $c t_{i}^{\prime} \leftarrow \operatorname{Encrypt}\left(p k_{1}\left\langle q_{i}, \pi\right\rangle\right)$ from encrypted queries $c t_{1}, \ldots, c t_{k+1}$ output SNARG $\pi_{\text {SNARE }}=\left(c t_{1}^{\prime}, \ldots, c t_{k+1}^{\prime}\right)$
$\operatorname{Verify}\left(\tau, \pi_{\text {sNARE, }} x\right)$: decrypt ciphertexts in $\pi_{\text {SNARE }}$ and verify responses using linear PCP verifier

Completeness: Follows by correctness of encryption scheme + completeness of linear PCP
Soundness (Sketch): Prover's strategy can be explained by a linear function [linear-only encryption]
Consistent linear function used for all responses [linear consistency check]
Prover's linear function independent of the verifier's queries [semantic security]
VI
appeal to soundness of linear PCP
Succinctness: Proof consists of (k+1) ciphertexts
\rightarrow Existing linear PCPs are constant query (eeg., $k=3) \Longrightarrow$ SNARG proof consists of 4 ciphertexts ($\tilde{O}(\lambda)$ bit proofs!)
(HWY)
(lattice-based)
Concrete instantiations: We can instantiate linear-only encryption with Paillier, ElGamal (over small fields), or Regev
\longrightarrow gives designated-verifier SNARGs
Can also instantiate with paring-based linear-only encodings
\rightarrow if the underlying linear PCP has a quadratic verification relation, then can verify the SNARG publicly (by evaluating the check in the exponent using the pairing)
\rightarrow Most efficient instantiations based on quadratic span/arithmetic programs (3 group elements, ~ 128 bytes) [Goth 2016]
(Basis for privacy-presersing concurrences like Zcash)
\longrightarrow Most fancy crypto that has seen large-soale deployment!

Note: Techniques readily generalize to yield both zero-knoolledge as well as proofs of knowledge (i.e. 2kSNARKs)

To wrap up: In this course, we showed how to use cryptography to protect communication

- Confidentiality of communication (encryption)
- Integrity for communication (signatures)

Proof systems generalize integrity for commumicution to general computations We can also perform geneal computations with strong confidentiallyy/integrity gearoutces \rightarrow More next semester!

A brief epilogue (constructing linear PCPs from quadratic arithmetic programs):

We will consider the language of rank-1 constraint satisfiability (RICS) - captures arithmetic circuit satisfiability:

- RICS instance is a constraint satisfiability problem where each constraint is a quadratic relation
- Variables are $\left[w_{1}, \ldots, w_{n}, w_{n+1}, \ldots, w_{n+h}\right]$ and. values are field diements $w_{i} \in \mathbb{F}$ (eg., integers modulo p)
- Each constraint is a quadratic function:

$$
\left(a_{0}+\sum_{i \in[n]} a_{i} \omega_{i}\right)\left(b_{0}+\sum_{i \in[n]} b_{i} w_{i}\right)=\left(c_{0}+\sum_{i \in[n]} c_{i} w_{i}\right)
$$

A single constraint can be defined as $\vec{a}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$

$$
\begin{aligned}
& \vec{b}=\left(b_{0}, b_{1}, \ldots, b_{n}\right) \\
& \vec{c}=\left(c_{0}, c_{1}, \ldots, c_{n}\right)
\end{aligned}
$$

We can write this also in matrix form. An element $\bar{\omega}=\left(1, \omega_{1}, \ldots, \omega_{n+h}\right)$ satisfies the system if

$$
(A \bar{\omega}) \circ(B \bar{\omega})=C \bar{\omega}
$$

where

$$
A=\left[\begin{array}{c}
-\vec{a}_{1}- \\
-\vec{a}_{2}- \\
\vdots \\
-\vec{a}_{m}-
\end{array}\right] \quad B=\left[\begin{array}{c}
-\vec{b}_{1}- \\
-\vec{b}_{2}- \\
\vdots \vdots \\
-\dot{b}_{m}-
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{c}
-\vec{c}_{1}- \\
-\vec{c}_{2}- \\
\vdots \\
-\vec{c}_{n}-
\end{array}\right]
$$

and $u \circ v$ denotes the Hadamard product (component-wire product)

- Let $\mathcal{C}=(A, B, C)$ be an RICS system over \mathbb{F}. We say that a statement $x \in \mathbb{F}^{n}$ satisfies \mathcal{C} if there exist $\bar{\omega}=\left(1, x_{1}, \ldots, x_{n}, \omega_{n+1}, \ldots, \omega_{n+h}\right)$ where $(A \bar{\omega}) \cdot(B \bar{\omega})=C \bar{\omega}$.
- Not difficult to show that RICS captures Boolean circuit satiofiability (which is NP-complete):
- Let $C:\{0,1\}^{n} \times\{0,1\}^{h} \rightarrow\{0,1\}$ be a Boolean circuit with m gates (assume xor and AND gates) and t wires
- RICS instance will have t variables, corresponding to wire values of C; and

$$
m+t \text { constraints: } \quad \begin{gathered}
\text { indices of } \\
\text { input wires } \\
\text { index of } \\
\text { output wire }
\end{gathered}
$$

1) gate constraints: for XOR gate $(i, j, k): w_{k}=w_{i}+w_{j}\left[\begin{array}{c}\text { constraint vectors for } \vec{a}, \vec{b}, \vec{c} \\ \text { are just standard basis vetoes }\end{array}\right]$ for AND gate $(i, j, k): w_{k}=w_{i} \cdot w_{j}$
2) wire validity: for each wire in circuit, $w_{i}\left(1-w_{i}\right)=0$ [ensures that each $w_{i} \in\{0,1\}$] $\longrightarrow \omega_{i}^{2}=w_{i} \quad$ [quadratic constraint]

How do we quickly check that $(A \bar{\omega}) \cdot(B \bar{\omega})^{?}=C \bar{\omega}$?
Key idea: Use polynomial mage!

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{1,0} & a_{1,1} & \cdots & a_{1, n+h} \\
a_{2,0} & a_{2,1} & \cdots & a_{2, n+h} \\
\vdots & \vdots & & \vdots \\
a_{m, 0} & a_{m, 1} & \cdots & a_{m, n+h}
\end{array}\right] \longleftarrow t_{1} \longleftarrow t_{2} \\
& A_{0} A_{1} \quad A_{n+h} \\
& A_{i}\left(t_{1}\right)=a_{1, i} \\
& A_{i}\left(t_{2}\right)=a_{2 i} \\
& A_{i}\left(t_{m}\right)=a_{m i}
\end{aligned}
$$

associate each column with a polynomial of degree $m-1$ where

Namely:

$$
A=\left[\begin{array}{ccc}
A_{0}\left(t_{1}\right) & \cdots & A_{n+h}\left(t_{1}\right) \\
\vdots & & \vdots \\
A_{0}\left(t_{m}\right) & \cdots & A_{n+h}\left(t_{m}\right)
\end{array}\right]
$$

Define B_{i} and C_{i} accordingly (using the same set of points t_{0}, \ldots, t_{m})

By construction,

$$
A \bar{\omega}=\left[\begin{array}{c}
\omega_{0} A_{0}\left(t_{1}\right)+\cdots+\omega_{n+h} A_{n+h}\left(t_{1}\right) \\
\vdots \\
\omega_{m} A_{0}\left(t_{m}\right)+\cdots+\omega_{n+h} A_{n+h}\left(t_{m}\right)
\end{array}\right]=\left[\begin{array}{c}
\bar{A}\left(t_{1}\right) \\
\vdots \\
\bar{A}\left(t_{m}\right)
\end{array}\right]
$$

where $\bar{A}=\omega_{0} A_{0}+\cdots+\omega_{n+h} A_{n t h}$
Now $(A \bar{\omega}) \circ(B \bar{\omega})=C \bar{\omega}$ if and only if

$$
\bar{A}(z) \cdot \bar{B}(z)=\bar{C}(z) \text { for all } z=t_{1}, t_{2}, \ldots, t_{n}
$$

Equivalently:

$$
\bar{A}(z) \cdot \bar{B}(z)-\bar{C}(z)=0 \text { for all } z=t_{1}, t_{2}, \ldots, t_{n}
$$

Let $Z(z)$ be the polynomial $Z(z)=\left(z-t_{1}\right)\left(z-t_{2}\right) \cdots\left(z-t_{m}\right)$. Then,

$$
\bar{A}(z) \cdot \bar{B}(z)-\bar{C}(z)=Z(z) H(z)
$$

for some polynomial $H(z)$ of degree at most $m-1$.

Observe: If $(A \bar{\omega}) \circ(B \overline{\bar{w}})=C \bar{\omega}$ then we can find $H(z)$ of degree $m-1$

$$
\forall Z \in \mathbb{F}: \quad \bar{A} \bar{B}-\bar{C}=H Z
$$

If there is no $\bar{\omega}$ where $(A \bar{\omega}) \circ(B \bar{\omega})=C \bar{\omega}$, then for all $H(z)$ of degree $m-1$:

$$
\bar{A} \bar{B}-\bar{C} \neq H Z
$$

since $(\bar{A} \bar{B}-\bar{C})\left(t_{i}\right) \neq 0$ but $Z\left(t_{i}\right)=0$

Since $\bar{A}, \bar{B}, \bar{C}, H, Z$ have dyne $m-1$, and $(\bar{A} \bar{B}-\bar{C}) \neq H Z$, there are at most $2 m-2$ points $z \in \mathbb{F}$ where $\bar{A}(z) \bar{B}(z)-\bar{C}(z)=H(z) Z(z)$

Idea: Verifier will check evaluation of $\bar{A} \bar{B}-\bar{C}$ and H at a random $\tau \ll \mathbb{R}$

- True statement: $(\bar{A} \bar{B}-\bar{C})(\tau)=H(\tau) Z(\tau)$
- False statement: $(\bar{A} \bar{B}-\bar{C})(\tau) \neq H(\tau) Z(\tau)$ with prob. $1-\frac{2 m-2}{|\mathbb{F}|}$.

Linear PCP construction:

- Polynomials $\bar{A}, \bar{B}, \bar{C}$ depends only on RICS system (known to verifier)
- $Z(z)$ is a fixed polpmemial - depends only on evaluation domain
- LPCP responses will be to compute $\bar{A}(\tau), \bar{B}(\tau), \bar{C}(\tau), H(\tau)$ and verifier checks that

$$
\bar{A}(\tau) \bar{B}(\tau)-\bar{C}(\tau) \stackrel{?}{=} H(\tau) Z(\tau)
$$

- Recall : $\bar{A}=\sum_{i=0}^{n+h} \bar{\omega}_{i} A_{i}$
$\bar{B}=\sum_{i=0}^{n+h} \bar{w}_{i} B_{i} \Rightarrow \bar{A}(\tau), \bar{B}(\tau), \bar{C}(\tau)$ are linear functions of

$$
\bar{C}=\sum_{i=0}^{n+h} \bar{w} ; c_{i}
$$

$$
A_{i}(\tau), B_{i}(\tau), C_{i}(\tau)
$$

known to verifier
prover knows wi

To compute $H(\tau)$, we can write

$$
H(\tau)=\sum_{i=0}^{m-1} h_{i} \tau^{i} \text { where } h_{i} \in \mathbb{F} \text { are the coefficient of } H
$$

\square known to verifier

- Quadratic arithmetic program:
- LPCP proof: $\pi=\left[\omega_{0}, \ldots, \omega_{n+h}, h_{0}, \ldots, h_{m-1}\right]$
- LPCP queries: $\tau \notin \mathbb{R}$

$$
\left.\begin{array}{rl}
\text { query for } \\
\bar{A}(\tau) & :\left[A_{0}(\tau), \ldots, A_{n+h}(\tau), 0, \ldots, 0\right] \\
\bar{B}(\tau) & :\left[B_{0}(\tau), \ldots, B_{n+h}(\tau), 0, \ldots, 0\right] \\
\bar{C}(\tau) & :\left[C_{0}(\tau), \ldots, C_{n+h}(\tau), 0, \ldots, 0\right] \\
H(\tau) & :\left[0, \ldots, 0, \tau^{0}, \tau^{\prime}, \ldots, \tau^{m-1}\right]
\end{array}\right\} \begin{array}{r}
\text { verifier checks that } \\
\bar{A}(\tau) \bar{B}(\tau)-\bar{C}(\tau) \\
=H(\tau) \tau(\tau)
\end{array}
$$

- Note: nothing here to check for statement
- Approach 1: add 1 check that $\left(w_{1}, \ldots, w_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)$ - can just take random linear combination
- Approach 2: Remove $A_{1}(\tau), \ldots, A_{n}(\tau)$ from queries and just add in those comporenents
$B_{1}(\tau), \ldots, B_{n}(\tau)$
$C_{1}(\tau), \ldots, C_{n}(\tau)$
at verification tine (since verifier knows statement)

