
To-day : another abstraction to construct succinct arguments
- does not rely on random oracles ( needs a CRS instead)
-

asymptotically shorter arguments : ① (7) proofs for proving NP relations of size poly (x)
- leads to the most compact SNARGS (pairing

-based construction is 3 group
elements ~ 128 bytes)

(basis of Zero cash protocol)

starting-point : different information - theoretic proof system

LinearPCPs_ [Ishai- Kashi levitz - Ostrovsky , 2007 ] :

law)

✓
proof is a vector of field elements (not necessarily binary field)

- -
TIED TIE Fm

of C- Fm ( ) (g.⇒ c- Fit

verifier (X) verifier is given oracle access to the linear PCP proof oracle (e.g. , verifier

submits a
query vector q c- Tt

"

and receives the response lg ,
Ti ) c- F-

Definition
.
A linear PCP for an NP language L (with corresponding relation 72) consists of two algorithms (P

,
V) with the

following properties :

-

CompE : If law) C- 72 , then if we set a ←PG,w) :

Pr[v1" " G) = I] = I

%und : For all ✗ ¢ L and an *
* gym
f- Proof dimension

Pr [ v47
' > (x) = I ] I E

← soundness error

Constructing linear PCB (for Boolean circuit satisfiability - let C be the circuit)

- Can instantiate using
Walsh- Hadamard code [Arora- Lund- Motwani - Sudan- Szgedy , 1992]

[ 3 queries , query length m = 01142)
,

soundness error E= 4111=1 ]
-

Can instantiate using quadratic span programs [Gennaro- Gentry - Porno- Ray kora , 2013]

[ 3 queries , query length m = 0 (Ict)
,
soundness error E =

""KFI ]

Several useful properties of these linear PCP constructions:

- Verifier is oblivious lie
,
the queries do not depend on the choice of the statement)

- Verification algorithm is a quadratic relation over the linear PCP responses [useful primarily for achieving public verifiability ]
(if r

,
= ta

, q ,) , . . .

,
rk = IT

, qk> , verifier's response is quadratic function in the variables r, , . . . ,rk)



From linear PCPs to SNARGS : Suppose verifier in linear PCP system is oblivious .
Then

,
we can generate the verifier's queries

ahead of Time (before the statement is known)
.

Lye:
generate the queries during setup :

Setup (1h ) → (o
,
a) where o is the CRS and T is the verification state

Suppose we have a k-
query

linear PCP
.

Then :

Setup ( 1
" ) → (0,2) : generate queries of , , ... , qk

E In and linear PCP verification state Tipcp

↳ 0 = (q , ,
...

, qk) and T = tcpcp

preparation
: 1. Encode statement-witness (× , W) as linear PCP TE Fm

2. Compute responses To verifier's queries
r
,
= (I

, of , > ,
...

, rk
= (it

, qk) E Tt

3. Proof consists of linear PCP responses r, , ... , rk ETF

Verifier runs verification procedure for underlying linear PCP (using r, , ... ,rk and a )

Klein: Prover can choose proof TEFM after seeing
The verifier 's queries

⇒ cannot appear to
soundness of linear PCP !

Solution: encrypt verifier's queries with additively - homomorphic encryption scheme [sufficesfor designated - verifier SNARGS ]

Setup ( 1" ) : lpk.sk) ← Key Gen (17

generate linear PCP
queries q , , ... , qk

E Fm and Tipcp encrypt each component of the query vector

-
let Ctij for it [ K] and jE[m] be Ctij ← Encrypt lpk , qi;) , and let Cti = (ctin

,
...

,
Hi
,m
)

Output O= (Ct, , ... , Ctk) and Ti' (SK
,
tipcp)

TO construct a proof, prover homomorphically computes

Cti
'
← GearsTy'ctij = Encrypt (pk, ti , of ;D

Verifier Takes Cti
, ... , ctk

'

, decrypts The ciphertexts to obtain responses r, , ... ,rk and applies linear PCP verification



Problem: Prover need not apply safe linear function a to construct Its queries
Solution : Introduce an additional consistency check

prover operates on queries q , , ... , qk and can compete

r
,
= (q , , it ,)

rz=lq
.
,
a.) | neoatcnthetseponasaewattoebsin:FIAT.FI#oYFFanof

: the query components
- but same idea applies +0

•

the general setting
rk = (qk

,
Tk)

useful Trick : tandemlinearity check - verifies chooses X , , ... , 2k£ FI and submits a query qk+,
= [ieck, tniqi £ Tt

"

Verifier additionally

checks
that rkti = [ieek]&ri

Observe : if prover uses The same t for all
queries

:

Sieck] Ari = { ieck] Xi (qi , T' ) = {Eiea.] digi , I) = (qµ, , I )

if
prover

does not use The same I for all queries, then

{ieek] Ari = { ieek] A {Gi , Ti ) and (qk+ , , Tlkn)
= Sieck] & ( 9i , That )

Verifieracceptsonly If
{ieek] Xi {9i , Ti)

= Sieck] & (9i , Ikti)

<⇒ Sieck] Xi ( gi , Ii - That) = 0
- if q;

=0 on all positions where Tlit Thai ,
non-Zero value | then can replace IT; with TKH and There is

since Ii - TKH # ° for some i (no longer an inconsistency
)

↳ since di ¥ IF
,
and independent of I, , ... , Ikn , over the choice of xi

,

This relation is satisfied with probability at most ¥1
[Schwartz - Zppel lemma]

Prnoblem: To appeal to soundness of linear PCP
,
we need to ensure That

prover only implements linear strategy

Solution : Assume encryption scheme is
"

linear- only
" (ice; only supports linear homomorphisms)

"

Linear- only
"

(informally) :

for all efficient adversaries A
,
There exists an extractor E where for any sequence

of messages mi , ... , mk :

Cti ← Encrypt (pk, mi) fieck]

ct
'
← A (pk , et , , ... , ctk)

| (T
,
b) ← E (pk , oh , ... , ctk)

it follows That

Decrypt ( sk, ct
' ) = Eiea.] Timi + b E #

"

any ciphertext That the adversary can compute can be explained by a linear function of the provided ciphertext
"

Note: Not
your Typical cryptographic assumption (non- falsifiable)

- Typical cryptographic assumptions like factoring , DDH ,
LWE can be formulated as a game

between a Challenger and an

adversary
- To break the linear- only assumption , need To exhibit some adversary such That there is noeffi.ae#extractI (can be

very challenging ! )



Putti-g-kpie-es-ge-hei.se/-uplI):(pk,sk)-KeyGen(17 generate public /private key for a linear- only encryption scheme

compute linear PCP queries q , , . . - , qk , linear consistency check
query 91<+1 and linear PCP verification state Tcpcp

encrypt queries of , , . . - , q¢+, (component - wise) using linear -only encryption scheme to obtain encrypted queries
Ct

, , . . . , Ctktl

publish 0
= (pk , 4 ,

. . .

,
ctkti) and I = Tcpcp

Prove (O
,
X
,
W) : construct linear PCP proof a c- Ttm from (X ,

W)

homomorphically compute cti ← Encrypt (pk , {qi , IT >) from encrypted queries cti
,
. .-

, ctkt ,

output SNARG Tlsnaro
= (Cti

,
.. -

, Ctia)

Verify ( T , Tlsnaro
,
X) : decrypt ciphertext in Tlsnaro and verify responses using linear PCP verifier

(⇒É Follows by correctness of encryption scheme + completeness of linear PCP

Soundnes#Ñ : Prover 's strategy can be explained by a linear function [ linear - only encryption]

Consistent linear function used for all responses [ linear consistency check]

Prover's linear function independent of the verifier's queries [ semantic security ]

I

appeal to soundness of linear PCP proof size independent d-
circuit size !

Eines: Proof consists of + 1) ciphertext
↳ Existing linear PCPS are constant query ( e.g. , 1<=3) ⇒ SNARG proof consists of 4 ciphertexts (ÑtDbi-proofs!#

lHW4) (lattice- based)
C-Eins-an-iat.io : We can instantiate linear- only encryption with Poitier

,
El Gamal (over small fields)

, or Regev
↳

gives designated- verifier SNARGS

Can also instantiate with pairing
-based linear-onlyencod.mg#

↳ if the underlying linear PCP has a quadratic verification relation
,
then can verify the SNARG publicly

( by evaluating the check in the exponent using the pairing)
↳ Most efficient instantiations based on quadratic span/arithmetic programs
(3 group elements

,
~ 128 bytes) (Groth 2016 ]

/Basis for privacy
-

preserving concurrencies like Zcash)

↳ Most fancy crypto that has seen large-scale deployment !

Note: Techniques readily generalize to yield both zero-knowledge as well as proofs of knowledge ( i.e . ZKSNARKS)

If : In
.

this course , we showed how to use cryptography to protect communication

-

Confidentiality of communication ( encryption)
-

Integrity for communication (signatures)
Proof systems generalize integrity for communicative to general computations
we can also perform general computations with

strong confidentiality / integrity guarantees
↳ More next semester !



A brief epilogue (constructing linear PCPS from quadratic arithmetic programs
) :

We will consider the language of rank -1 constrains satisfiability (RICS) - captures arithmetic circuit satisfiability :

- RICS instance is a constraint satisfiability problem where each constraint is a quadratic relation

-

Variables are [Wi, .. . ,Wn,Wn+i , . . . ,Wn+h ] and
.
values are field. elements Wi C- F- ( e.g. , integers modulo p)

-

Each constraint is a quadratic function :

( ao t [aiwi) /bot E. b.iwi) = (co + { ciwi)i c-En] ion] ion]

A single constraint can be defined as I = Cao
,
a
, ,
. . .

,
an)

I = (too
,
.b
, .
. - -

,
bn)

I = (co
,
G

, . . . ,
CNT

We can write this also in matrix form
. An element Ñ = ( 1

, Wi, . . . , Wnth) satisfies the system if

(Auto (Bio) = CÑ
- bi - - E-

- in-
where A =/- ii.- ) ) and C =/- E-

- on-

B =/ - bi- ,
: :

-

%-)
-bin-

and U ° ✓ denotes the Hadamard product (component -wise product)
- Let E = (A

,
B
, C) be an RICS system over TF

.

We
say

that a statement ✗ C- F
"

satisfies E if

there exist Ñ = (1 , ✗ , ,
- -

,
Xn

,
Wnt, , . . . , worth) where (Aut) 0 (Bio) = CÑ .

- Not difficult to show that RICS captures Boolean circuit satisfiability (which is NP-complete) :
- Let c:{0,13

"
✗ {0,13h → { 0,13 be a Boolean circuit with m gates (assume ✗or and AND gates) and t wires

- RICS instance will have t variables , corresponding to wire values of C ; and

indices of index of
Mt t constraints : input wiresy

,
y output wire

1) gate constraints : for ✗or gate lij , K) : wk = Wi + Wj (constraint vectors for d. 5. E)
are just standard basis vectors

for AND gate lij , K)
: wk = Wi -

Wj
2) wire validity : for each wire in circuit

, will- w;) = 0 [ensures that each wit {0,13]
↳

W
,

?
= Wi fquadratic constraint]

?
How do we quickly check that CAÑ)o (Bio) = co ?

Refik : Use polynomial magic !

associate each row (i.e, each constraint with a point E- C- Tt)Ayo Al
, I

- i - Al
,
nth ← -2

,

A = !o 92,1 - - . aznth ) ← -22

: : :
← tmAm,o Am

,
I

- - - Am
,
nth

T r r

Amn

associate each column with a polynomial of degree m - l where

Ao Ai Ait
,) = Ani

Aifa) = Az;
:

Aiflm) = ami



Namely :

Define Bi and Ci accordinglyAoti) - - - Anant.)

)A =/ : : (using the same set of points to . . .
.

,
-1m)

Aoltm) - - - Anthltm)

By construction
,

Wo Aoti) + - -
- + wnth Anth (ti) A- (t

,) )Añ =/ : / =/ :

A- Itm)
-

WmAoltm) t - -
- + Wnth A nth (tm)

where Ñ = Wo Ao t - - - + wnth Auth

Now (Auto (Bio) = Cut it and only if

A- (z) - 1-312-1 = ECZ) for all 2- = -1
, , -22 , . . . , ten

F-qivakntly
:

A- (z) - 1-312-1 - [(Z) = 0 for all 2- = t
, , -4 , . . . , tm

Let Zfz) be the polynomial 2-12-1=(2--4112--5) - . . ( 2- - tm)
.
Then

,

A- (z) - B- (z) - [ (Z ) = 2ft) HCZ)

for some polynomial HH) of degree at most m-1 .

Observe : If (Ao) 0 (Bio) = Cio then we can find Hft) of degree rn - I

z c- F- : A-B - E = HZ

If there is no Ñ Where CAÑ) 0435) = CÑ
,
then for all HIZ) of degree m

- 1 :

A-B- - c- =/ HZ

since FAI - E) (ti) =/ 0 but 21-4-1=0

Since A- , B- , E , H , 2 have degree m - 1
,
and (ÑB- E) =/ HZ

,
there are at most 2m-2 points

2- c- F- where A- (2-71-312) -Elz) = H (z) 2- (z)

Ida: Verifier will check evaluation of A- B- -T and H at a random T * Tt

-

True statement :(TAB -E) (t) = H (c) 2- (c)
- False statement :(ÑB- E) (T) =/ Htc) 2- (e) with prob. 1- 7,7¥ .

Linear PCP construction :

-

Polynomials A-
,
B
,
E depends only on RICS system (known to verifier)

-

2 (Z) is a fixed polynomial
- depends only on evaluation domain

-

LPCP responses will be to compute A- (c)
,
B- (T)

,
C- (T)

,
Htc) and verifier checks that

A- (c) B- (e) - ECT) =

?

Htc)2(e)



nth
-

Recall : A- = IÑi Ai
i -0

nth

B- = I Ñi Bi ⇒ A- (e) , B- (e) , Etc) are linear functions of
i=o

Ait)
,
Bite) , cite)

nth

c- = E. Ñ:(i -
i:O

known to verifier prover
knows wi

To compute Ht) , we can write

m-
l

Ht) = [ hi Ii where hi C- F- are the coefficient of H

i --0
La prover knows hiknown to verifier

- Quadratic arithmetic program
:

- LPCP proof : T1 = [ Wo , . . . ,
Wnth

,
ho

,
- . -

,
hm-1 ]

- LPCP queries
: TE Tt

query
for A- (T) : [Aot) , - - . , Antu (e) , 0

, -
- - so]

B- (t) : (Bolt) , . . . , Bruh (e) , 0 , . . . , 0] } verifier checks that

c-t) : [Colt)
,
. . .

,
Cath G)

,

0
,
. . -

,
0] TAKIB- (e) -Etc)

Ht) : [ 0
,

- =

,
0,2°

,
I
'

,
. . . ,
IM
" ] = H (e)2(e)

- Nite : nothing here to check for statement

-

AppÉ1 : add I check that (w , , . . . , wn) = (x . , . . ,xn)
-

can just take random linear

combination

-

Ap¥hÉ : Remove Ait) , - - - , Ant) from queries and just add in those components
B.it)

,
- - .

.
But) at verification time (since verifier

C
, (E) , . . . , Cat) knows statement)


