Understanding the definition:
Can we learn the least significant bit of a message given only the ciptertext (assuming a semantically-secure apter) No! Suppose we could. Then, adversary can choose two messages m_{0}, m_{1}, that differ in their least significant bit and distinguish with portability 1.
This generalizes to any efficiently-computable property of the two messages.
How does semantic security relate to perfect secrecy?
Theorem. If a cipher satisfies perfect secrecy, them it is semantically secure.
Proof. Perfect secrecy means that $\forall m_{0}, m_{1} \in M, c \in C$:

$$
\operatorname{Pr}\left[K \& K: \text { Encrypt }\left(k, m_{0}\right)=c\right]=\operatorname{Pr}\left[k \bumpeq K: \text { Encrypt }\left(k, m_{1}\right)=c\right]
$$

Equivalently, the distributions

$$
\underbrace{\left\{k \& R: E_{\text {rept }}\left(k, m_{0}\right)\right\}}_{D_{0}} \text { and } \underbrace{\left\{k \& R: E_{\text {nocppt }}\left(k, m_{1}\right)\right\}}_{D_{1}}
$$

are identical $\left(D_{0} \equiv D_{1}\right)$. This means that the adversary's output b ' is identically distributed in the two experiments, and so $\operatorname{SSAdv}\left[A, \pi_{s E}\right]=\left|\omega_{0}-\omega_{1}\right|=0$.

Corollary. The one-time pad is semantically secure.

$$
\begin{aligned}
& \text { encryption bey (PRG seed) } \\
& \text { seems straightforward, } \\
& \text { (s) } \oplus m \\
& (s) \oplus c
\end{aligned}
$$

Theorem. Let G be a secure PRG. Then, the resulting stream doppler conntincted from G is semantically secure. Proof. Consider the semantic security experiments:

Experiment 0 : Adversary chooses m_{0}, m_{1} and receives
$\left.c_{0}=G(s) \oplus m_{0}\right\}$ Want to shows that adversary's
Experiment 1: Adversary chooses m_{0}, m_{1} and receives $\left.c_{1}=G(s) \oplus m_{1}\right\} \begin{aligned} & \text { output in these } \\ & \text { indistingisshable }\end{aligned}$
Let $W_{0}=\operatorname{Pr}[A$ outputs 1 in Experiment 0$]$
$\omega_{1}=\operatorname{Pr}[A$ outputs 1 in Experiment 1]
Goal: Shaw that if G is a secure PRG, then for all efficient adversaries $A,\left|\omega_{0}-\omega_{1}\right|=\operatorname{neg} \mid(\lambda)$.
Idea: If $G(s)$ is uniform random string (ie, one-tine pad), then $W_{0}=W_{1}$. But $G(s)$ is like a ore-time pad! Define Experiment 0^{\prime} : Adversary chooses m_{0}, m_{1} and receives $c_{0}=t \oplus m_{0}$ where $t\left\{_{0}^{R}\{0,1\}^{n}\right\} \begin{gathered}\text { called "hybrid } \\ \text { experiments" }\end{gathered}$

Experiment 1': Adversary chooses m_{0}, m_{1} and receives $c_{1}=t \oplus m_{1}$ where $\left.t \in\{0,1\}^{n}\right\}$ experiments" Define $\omega_{0}^{\prime}, \omega_{1}^{\prime}$ accordingly.

Now we can write

$$
\begin{aligned}
& \left|\omega_{0}-\omega_{1}\right|=\left|\omega_{0}-\omega_{0}^{\prime}+\omega_{0}^{\prime}-\omega_{1}^{\prime}+w_{1}^{\prime}-\omega_{1}\right| \\
& \leqslant\left|\omega_{0}-\omega_{0}^{\prime}\right|+\underbrace{\left|\omega_{0}^{\prime}-\omega_{1}^{\prime}\right|}+\left|\omega_{1}^{\prime}-\omega_{1}\right| \quad \text { by triangle inequality } \\
& W_{0}^{\prime}=W_{1}^{\prime} \text { (for all adersonies } A \text {) } \\
& \text { since OTP satisfies } \\
& \text { perfect scriecy }
\end{aligned}
$$

Suffices to show that for all efficient adversaries, $\left|\omega_{0}-\omega_{0}^{\prime}\right|=\operatorname{neg} \mid(\lambda)$ and $\left|\omega_{1}-\omega_{1}^{\prime}\right|=$ ny $\mid(\lambda)$.

Show. If G is a secure PRG, then for all efficient $A, \quad\left|\omega_{0}-\omega_{0}^{\prime}\right|=$ neg. Common proof technique: prove the contrapositive.

Contrapositive: If A can distinguish Experiments 0 and 0^{\prime}, then G is not a secure PRG.

Suppose there exists efficient A that distingaistes Experiment O from O^{\prime}
\Rightarrow We use A to construct efficient adversary B that breaks security of G.
\longrightarrow this step is a reduction
[we show how adversary (ie., algorithm) for distinguishing Exp. 0 and $\sigma^{\prime} \Rightarrow$ adversary for PRG]
Algorithm B (PRG adversary):

$$
b \in\{0,1\}
$$

PRG challenger $\underset{ }{ }$

Algorithm A

if $b=0: s^{\mathbb{R}}\{0,1\}^{\lambda}$

$$
t \leftarrow G(s)
$$

if $b=1: t \leftarrow\{0,1\}^{n}$

Running time of $B=$ running time of $A=$ efficient

Compute $\operatorname{PRGAdv}[B, G]$.
$\operatorname{Pr}[B$ outputs 1 if $b=0]=W_{0} \leftarrow$ if $b=0$, then A gets $G(s) \oplus m$ which is precisely the behavior in Exp. 0
$\operatorname{Pr}[B$ outputs 1 if $b=1]=\omega_{0}^{\prime} \leftarrow \cdot f b=1$, then A gets $t \oplus m$ which is preosely the behavior in Exp. 0^{\prime}
$\Rightarrow \operatorname{PRGAds}[B, G]=\left|W_{0}-W_{0}^{\prime}\right|$, which is non -negligible by assumption. This proves the contrapositive.

Important note: Security of above schemes shown assuming message space is $\left\{0,13^{n}\right.$ (ie., all messages are n-bits long)
In practice: We have variable-length messages. In this case, security guarantees indistinguishability from other messages of the same length, but length itself is leaked [inevitable if we want short ciphertexts]
\longrightarrow can be problematic - see traffic analysis attacks!

So far, we have shown that if we have a PRG, then we can encrypt messages efficiently (stream cipher)

Do PRGs exist? We don't know! More difficult problem than resolving P vs. NP!
Hoverer, it is not hard to see that if PRGs exist, then $P \neq N P$. [Try proving this yourself]
\rightarrow What we can say is that if "ore-way function" (ow) exist, then there exists a PRG that stretches the seed by 1 bit (eeg., λ-bit seed $\rightarrow(\lambda+1)$-bat string
function that is "easy" to compute but "hard" to "invert
\longrightarrow will define more formally later in the course
a PRG is an example of such a function given $s \in\{0,1\}^{\lambda}$, evaluating $G(s) \in\{0,1\}^{n}$ is easy gin $G(s) \in\{0,1\}^{n}$ for random $s \in\{0,1\}^{\lambda}$, compuntry S is hard (why?)

But what if we want PREs with longer stretch? For example, can we build PRGs with stretch $l(\lambda)=$ poly (λ) for arbitrary polynomials?
Blum-Micali PRG: Suppose $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda+1}$ is a secure PRG. We build a PRG with stretch $l(\lambda)=$ poly (λ) as follows:

Why is this constructing a secure PRG?
\rightarrow Intuitively, if s_{0} is uniformly random, then $G\left(s_{0}\right)=\left(b_{1}, s_{1}\right)$ is uniformly random so we can feed s_{1} into the PRG and take b_{1} as the first output bit of the PRG \Rightarrow iterate until we have l output bits

Theorem. If $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda+1}$ is a secure PRG, then the Blum-Micali generator $G^{(l)}:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{l(\lambda)}$ is also a secure PRG for
Proof. Consider the following experiments:

Experiment H_{1} : Sample $t \stackrel{R}{\leftarrow}\{0,1\}^{l(\lambda)}$ and adversary is given t
For an adversary A_{1} define

$$
\begin{aligned}
& W_{2}:=\operatorname{Pr}\left[A \text { outputs } 1 \text { in } H_{0}\right] \\
& W_{1}:=\operatorname{Pr}\left[A \text { outputs } 1 \text { in } H_{1}\right]
\end{aligned}
$$

Goal: Show that if G is secure, thin for all efficient adversaries $A,\left|\omega_{2}-\omega_{1}\right|=\operatorname{reg} \mid(\lambda)$.

We will use a "hybrid" argument. Specifically, we first define a sequence of intermediate experiments, where each adjacent pair of experiments is easy to reason about (i.e., directly reduces to security of G)

In each experiment, adversary is given the sequence of bits $b_{1} b_{2} \cdots b_{l}$
Let A be an efficient distinguister. Define $\bar{W}_{i}: \operatorname{Pr}\left[A_{\text {outputs }} 1\right.$ in experiment $\left.\bar{H}_{i}\right]$

$$
\begin{aligned}
\text { Then, PRGAdv[A,G] } & =\left|w_{0}-w_{1}\right| \\
& =\left|\bar{w}_{0}-\bar{w}_{l}\right| \quad \quad \text { by detiatitin) } \\
& =\left|\bar{w}_{0}-\bar{w}_{1}+\bar{w}_{l}-\bar{w}_{2}+\cdots+\bar{w}_{l-1}-\bar{w}_{l}\right| \\
& \leq\left|\bar{w}_{2}-\bar{w}_{1}\right|+\left|\bar{w}_{l}-\bar{w}_{2}\right|+\cdots+\left|\bar{w}_{l-1}-\bar{w}_{l}\right|
\end{aligned}
$$

(by triangk equally)

Claim. If G is a secure PRG, then for all efficient adversaries $A,\left|\bar{w}_{i}-\bar{W}_{i+1}\right|=\operatorname{neg}(\lambda)$.
Prof. We will show the contrapositive: if A can distinguish experiments \bar{H}_{i} and \bar{H}_{i+1}, them A cam break ppeculorandomness of G.
Suppose $\left|\bar{w}_{i}-\bar{w}_{i n}\right|=\varepsilon$. We use A to build a distinguister B for G. Algorithm B works as follows:

1. On input a string $z \in\{0,1\}^{\lambda+1}$, algorithm B parses z as $\left(b_{i+1}, s_{i+1}\right)$ where $b_{i+1} \in\{0,1\}$ and $s_{i+1} \in\{0,1\}^{\lambda}$
2. Sample $b_{1}, \ldots, b_{i} \in\{0,1\}$.
3. Compute b_{i+2}, \ldots, be using Blum-Mial: with seed s_{i+1}. Give $b_{1} \cdots b_{l}$ to A and output whatever A outputs.

In pictures:

$$
b_{1} \mathbb{R}^{\ell}\{0,\} \cdots b_{i}^{R}\{0,1\}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\bar{H}_{1} \\
\\
b_{1} \varepsilon^{R}\{0,1\} & s_{1} \varepsilon_{1}^{R}\{0,1\}^{\lambda} & \begin{array}{c}
\downarrow \\
b_{2}
\end{array}
\end{array} \rightarrow s_{2} \rightarrow \frac{G}{\downarrow} \rightarrow \cdots \\
& S_{2} \rightarrow G \rightarrow \ldots \\
& \text { Basic idea: in experiment } \bar{H}_{i} \\
& \text { the first } i \text { bits of outpace } \\
& \text { are gereated unifocomly at som } \\
& \text { while the remaining bits are } \\
& \text { generated uisy the Bhum-Mied: } \\
& \text { generator } \\
& H_{1}=\bar{H}_{l} \quad b_{1} \leftarrow^{\ell}\{0,1\} \quad b_{2} \leftarrow\{0,1\} \quad \cdots \cdot b_{l} \leftarrow^{R}\{0,1\}
\end{aligned}
$$

Two possibilities: 1. Suppose $z=G\left(s_{i}\right)$ for some $s_{i} \npreceq\{0,1\}^{\lambda}$. Then, above picture looks like this:

$$
\begin{aligned}
& b_{1} \stackrel{R}{\&}\{0,1\} \quad \cdots b_{i} \ell^{\ell}\{0,1\} \quad b_{i+1} \quad b_{i+2} \quad b_{i+3}
\end{aligned}
$$

In this case, b_{1}, \ldots, b_{ℓ} is distributed exactly as in experiment $\bar{H}_{\text {: }}$ and so A outputs 1 with prob. $\overline{\omega_{i}}$
2. Suppose $z \leftarrow^{R}\{0,1\}^{\lambda+1}$. Then above pidure looks like this:

$$
\begin{aligned}
& S_{i+1}=\{0,1\}^{2} \\
& b_{1} \stackrel{R}{\&}\{0,1\} \quad \cdots \quad b_{i} \mathbb{R}^{R}\{0,1\} \quad b_{i+1} \stackrel{\&}{\ell}\{0,1\} \quad \underset{b_{i+2}}{\downarrow} \quad b_{i+3}
\end{aligned}
$$

In this case, $b_{1}, \ldots, b l$ is distributed exactly as in experiment \bar{H}_{i+1} and so A outputs 1 with prob. \bar{W}_{i+1}

Thus, $\operatorname{PRGAdu}[B, G]=\left|\bar{w}_{i}-\bar{w}_{i+1}\right|$

$$
=\varepsilon
$$

since B outputs whatever A outputs

Very important to argue that B "simulates" the correct view for A. Othercive, behavior of A is unknown!
Since B is efficient lassuming A is efficient), by seccuisty of $G, \operatorname{PRCAdv}[B, G]=\operatorname{neg}(\lambda)$. Thus, $\varepsilon=\left|p_{1}-p_{i+1}\right|=$ neg (λ), and the claim follows.

To complete the proof of the main theorem, we have that

$$
\begin{aligned}
\left|\bar{W}_{0}-\bar{W}_{l}\right| & \leqslant\left|\bar{W}_{0} \bar{W}_{l}\right|+\cdots+\left|\bar{W}_{l-1}-\bar{W}_{l}\right| \\
& \leqslant l \cdot \operatorname{neg} \mid(\lambda) \\
& =\operatorname{reg} \mid(\lambda) \text { since } l=\operatorname{pol}(\lambda) .
\end{aligned}
$$

Proof strategy recap: 1. Hybrid arguments: to argue indistinguishability of a pair of distributions, begin by identifying a simple set of intermediate distributions, and argue that each pair of adjacent distributions is indistinguishatide
2 Security reduction (proof by contrapositive): To show a statement of the form "If X is secure, then Y is secure," show instead the the statement "If Y is not seccire, then X is not secure." In the proof, show that if there exists an adversary for Y (i.e. Y is not secure), then there exists an adversary for X.
\longrightarrow when constructing this adversary, it is important to show that it simulates the correct distribution of inputs to the underlying adversary (ie., this is essentially shaving correctness of the reduction algorithm)

Stream ciphers in practice:
(1987)

- RC4 stream cipher (widely wed - SSL/TLS protocol, 802.11b)

Numerous problems:
$\frac{128-\text { bits }}{\downarrow}$ initial PRG seed
2048-bit internal state
$\downarrow C$
1-byte per round

- Bias in initial output: $\operatorname{Pr}[$ second byte $=0]=\frac{2}{256}>\frac{1}{256}$
\rightarrow when using RC4, recommendation is to ignore first 256 bytes due to potential bias
\rightarrow Correlations in output: probability of seeing $(0,0)$ in out pat is $\frac{1}{2 s 6^{2}}+\frac{1}{256^{3}}>\frac{1}{256^{2}}$
L Given outputs of RC4 with related keys (eg., keys sharing common suffix), possible to recover keys after seeing few blocks of output
\rightarrow Can be very problematic on weak devices (who may not have good sources of entropy)

