
Thruster : PRP / PRF in "
counter mode

"

gives us a stream cipher (one - time encryption scheme)

f- typically , the IV is divided into a

Ho_ÉÉ? Choose a random_ starting point (called an initialization vector) nonce (value that does not repeat) and
a counter : IV = nonce // counter" randomized counter mode

"

-1
random

divide message into blocks (based on block size of PRF)

value

a.me#o-bseree: ciphertext is longer than the

message (required for CPA security)

theorem: Let F : K ✗ ✗ → Y be a secure PRF and let Tlctr denote the randomized counter mode encryption scheme

from above for l-block messages (M
= Xfl)

.
Then

,
for all efficient CPA adversaries A

,
there exists an

efficient PRF adversary B such that

cPAAdv[A
,
Tlctr] f + 2- PRFAdvlB.FI

←
Q : number of encryption queries
l : number of blocks in message

Intuition : 1
.

If there are no collisions (i.e, PRF never evaluated on the same block)
,
then it is as if everything is

encrypted under a fresh one-time pad.

2. Collision event : ( X
,
X +1

, . . . ,
✗ + l- 1.) overlaps with (✗ '

,
✗
'
1- 1, - - - , ✗

'
+ l- 1) when ×

,
X
' F- ✗

→→
✗ - e ✗ ✗+ l

←

probability that X
'

lies in this interval is f ¥1

There are £ Q2
possible pairs (X, X

' )
, so by a union bound

,

Pr[collision ] I%d
3. Remaining factor of 2 in advantage due to intermediate distribution (hybrid argument)

:

Encrypt Mo with PRF g) PRFAdv[B.F) +

Encrypt Mo with fresh one-time pad
I 0

Encrypt m
, with fresh one-time pad

I PRFAdv [B.F) + 2÷Encrypt m
, with PRF

Interpretation: If 1×1=2
'"

(e.g. , AES) , and messages are 1 MB long 1216 blocks) and we want the distinguishing advantage
to be below 2-32

,
then we can use the same key to encrypt

Q £f→¥l✗ = [¥ = ☒ = 239 (~ / trillion messages !)



NÉtemode : divide IV into two pieces
: IV = nonce 11 counter

T
value that

does not repeat
common choices : 64 -bit nonce, 64 - bit counter } only nonce needs to be sent !

96- bit nonce
,
32 - bit counter (slightly smaller ciphertexts)

Only requirement for security is that IV does not repeat :
-

Options? Choose randomly (either IV or nonce)
-

Options: If sender + recipient have shared state (e.g., packet counter)
,
can just use a counter

,
in

which case , IV / nonce does not have to be sent

(CTR)

Counter mode is parallelizable, simple
- to - implement , just requires PRF

-

preferred mode of using block ciphers

Other block cipher modes of operation :

cipherblock chaining CCBC) : common mode in the past (e.g. , TLS 1.0 , still widely used today)

II ☒ ☒ DE

_YF-
☒

/ FIE FIE FF¥chosen 7

*
:

. -¥÷÷÷=¥r±F÷¥to compute F-
1

Encryption not just PRF) Decryption

theorem: Let F : K ✗ ✗ → Y be a secure PRF and let Tlcisc denote the CBC encryption scheme for l - block

messages (m = ✗fl )
.
Then

,
for all efficient CPA adversaries A

,
there exists an efficient PRF adversary

B such that 20ft
cPAAdv[A

,
TKBC] £ 1×1-+2 - PRFAdvCB.FI

←
Q : number of encryption queries
l : number of blocks in message

intuition : similar to analysis of randomized counter mode :

1. Ciphertext is indistinguishable from random string if PRP is evaluated on distinct inputs
2
.
When encrypting ,

PRP is invoked on l random blocks
,
so after Q queries , we have Ql random blocks

.

⇒ Collision probability £ I this is larger than collision prob. for randomized counter mode by a
factor of £ [ overlap of Q random intervals vs. Ql random points]

3. Factor of 2 arises for same reason as before

212 40Th

Interpretation . CBC mode provides weaker security compared to counter mode : 2¥ Us . -1×1

Concretely : for same parameters as before ( IMB messages,
2-32 distinguishing advantage) :

Qs = = ✓-263 = 2
" '

( ~ 1 billion messages)

↳ 2%5 ~ 180 ✗ smaller than using counter mode



Paddi-g.BE : each ciphertext block is computed by feeding a message block into the PRP

⇒
message must be an even multiple of the block size

⇒
when used in practice, need to pad messages

can we pad with zeroes
? Cannot decrypt ! What if original message ended with a bunch of zeroes ?

BEI : padding must be invertible

CBC padding in TLS to : if K bytes of padding is needed , then append to bytes to the end, with each byte set to 1<-1

(for AES- CBC) if 0 bytes of padding is needed, then append a block of 16 bytes , with each byte equal to 15
↳ dummy block needed to ensure pad is invertible ( injective functions m_ust expand :}↳ called PKCS#5 /PKCS # 7 (public-key cryptography standards) / {0,13=254 > I {0,132561

Need to pad in CBC encryption can be exploited in
"

padding oracle
"
attacks

Padding in CBC can be avoided
using idea called "

ciphertext stealing
" (as long as messages are more than 1 block)

each keystroke is sent in separate
packet , so # packets leaks info on lenljh

*÷.

"""

Comparing CTR mode to CBC mode :

imagine 1 byte messages
CTRmode__ cBCmode_

encrypted key strokes)1. no padding needed (shorter ciphertexts) over SSH

2. parallelizable 2. sequential 1 block + 1 byte with CTR

2 blocks with CBC
3.

only requires PRF (no need to invert) 3. requires PRP
←

\
4. tighter security 4. less tight security requires more structured primitive,
5. IVs have to be non-repeating / easy to implement : (re-key more often) more code to implement forward

and backward evaluation
land spaced far apart) IV = nonce /1 counter 5. requires amicable IVs

T

only needs to be F- TLS 1.0 used predictable IVs
non- repeating (can be predictable) (see HWI for an attack)

SSH v1 used a 0 IV

lever worse ! )

Bottomine : use randomized or nonce -based counter mode whenever possible : simpler , easier , and better than CBC !

A tempting and bad way
to use a block cipher : ECB mode (electronic codebook)

/ T t |
""" " """""" " """ " "* """"

I FIX Not even semantically secure !

✓ ✓ ( Mo
,
Mo) vs. (Mo

,
M ,) where me =/ Mo

☒ ☒ i t
ciphertext blocks output

ciphertext blocks
output are same

are different

=¥yptin : simply apply block cipher to each block

of the message

Decryption : simply invert each block of the ciphertext

NEVER USE ECB MODE FOR ENCRYPTION §


