
Messaging: Confidentiality alone not sufficient
,
also need messageintegrity. Otherwise adversary can tamper with the message

(e.g. ,
"

Send $100 to Bob
"
→

"

send $100 to Eve
")

In some cases (e-g. , software patches) , integrity more important than confidentiality
idea : Append a "

tag
" (also called a "

signature
") to the message to prove integrity

(
property we want is tags should be hard to forge)

(
this tolerates a single error

Observation: The tag should be computed using a keyed- function (better error-correcting codes can do mugham,
↳ Example of keyless integrity check : CRC (cyclic redundancy check) (simple example is to set tag to be the parity)

↳ this was used in SSH v1 11995) for data integrity ! Fixed in SSH v2 11996)

↳ also used in WEP (802.1lb) protocol for integrity
- also broken!

Prodded : If there is no key, anyone can compute
it ! Adversary can tamper with message

and compute the new tag .

Definition . A message authentication code (MAC) with key -space K , message space N and tag space T is a tuple of

algorithms TIMAC = (sign , Verify) :

sign : K x m → T } Must be efficiently - computable
Verify : Kx n xT → {o , if

↳s : Hk Ek
,
Hm C- n :

Pr [Verify (k , m , sign (k,m)) = I] = I
[
Sign can be a randomized algorithm

Defining : Intuitively, adversary should not be able to compute a tag on any message without knowledge of the key
↳ Moreover

,
since adversary might be able to see tags on existing messages (e.g., signed software

updates) , it should not help towards creating a new MAC

adversary gets to choose

messages to be signed
→

Definition . A MAC FMA (sign, Verify) satisfies existential unforgeability against chosen message attacks (EUF
- CMA) if for all efficient

adversaries A
,
MACAdvEA, Thune] =PREW

-

-I] = negl.CH , where W is the output of the following security game
:

-€,

As usual , X denotes the length of the MAC secret key

t ← sign Ck ,my f
(e.g- i log 1kt = poly Cx))

c- Node : the key can also be sampled by a special keyGen

X 2- algorithm (for simplicity , we just define it to be

(m*
,
t 't) uniformly random)

Let Mi
.
. . .

, ma be the signing queries the adversary submits to the challenger, and let ti ← sign (k , mi) be the challenger's

responses. Then, W
= I if and only if :

Verify (k, m*, t *) = 1 and (m't
,
t
*) Cf { Cm . ,

ti)
.
. . .

,
Cma

,
ta)}

MAC security notion says that adversary cannot produce a new tag on any message even if it gets to obtain tags on messages of its

choosing .

First
,
we show that we can directly construct a MAC from any PRF.

Mttcsfromprfs : Let F : K ✗ M → T be a PRF. We construct a MAC Tlmac over (K
,
M

,
T) as follows :

sign (Kim) : output t ← FCK , m)

Verify (k ,m ,
-2) : output 1 if t = FCK,m) and 0 otherwise

Thn. If F is a secure PRF with a sufficiently large range , then Tlmac defined above is a secure MAC. Specifically,
for

every
efficient MAC adversary A , there exists an efficient PRF adversary B such that

MACADVCA
,
Tlmac] f PRFADVEB

,
F) t ¥1

.

IntÉf : 1. Output of PRF is computationally indistinguishable from that of a truly random function
.

2 . If we replace the PRF with a truly random function
, adversary wins the MAC

game only if it

correctly predicts the random function at a new point. Success probability is then exactly %-11
.

Proo_f. We define the following sequence of hybrid experiments :

Hybo : This is the MAC security game :

¥y ←É Go_al : show for all efficient A :

| [
" K

Pr[Hybo (A) = 1] = negl .
e

f- -

(m*
,
-1*1

Experiment outputs 1 if adversary did not
query on

m
" and +

*
= Flk

,
m*)

Hyb , : same as Hybo except we replace FCK
,

•) with ft) where f # Fans (M
,
T]

Le_mma1 .

If F is a secure PRF
,
then for all efficient adversaries A

,

/ Pr[Hybo (A) = I] - Prftlyb, (A) =L] = neyl .
Info . Suppose there exists efficient A such that above probability is E. We construct B as follows :

_aÉyB -

challenges /
be {0,13

b-- o ? K
K

f : = FCK, -)
aA¥,*/ =L : team.cm, ;-]

'

1-
↳

output 1 it A does not
query on m* and +

*
= f(m*)

Pr /B outputs 1 I b--0] = Prftlybo (A) = I]
Pr [B outputs 1 / b = 1] = prayb. (A) = y] } PRF

Adv [B.F) = E

Lemmata .
For all adversaries A

, Prftlyb ,
/A) = I] = ¥1

.

Pit . Hyb ,
(A) outputs 1 it A predicts value of fat m* . Since f is uniform

,
A succeeds

with probability at most YITI
.

Implication : Any PRF with large output space can be used as a MAC.

↳ AES has 128 - bit output space, so can be used as a MAC

throwback : Domain of AES is 128-bits
,
so can only sign 128-bit 116-byte) messages

How do we sign longer messages ? We will look at two types of constructions :

1. Constructing a large- domain PRF from a small- domain PRF (i. e. , AES)

2. Hash- based constructions

Approach 1 : use CBC (without IV)

☒ . - .☒
ii.

. .-0+1

t.fi#--&.7---:i-F.-- output
Not encrypting messages so no need for IV (or intermediate blocks)
↳ Mode often called "

raw - CBC
"

Raw- CBC is a way to
build a Large-dn PRF from a smatter one

↳ Can show security for
"

prefix-free
"

messages {more precisely, raw - CBC is a prefix-free PRF : pseudorandom as long
- as PRF never evaluated on two values where one is a prefix of other

]
> includes fixed-length

messages as a special case

But not secure for variably messages
: "

Extension attack
"

1. Query for MAC on arbitrary block X :

1¥ f
☒ 17¥

tag

t.FI#-i=(k.xT F¥TF¥¥→ Fck
,

= -1

2. Output forgery on message (X , ✗ ④ t) and tag t
- ⇒ t is a valid tag on exten-dedmessage-tx.to)

↳ Adversary succeed with advantage I

raw CBC can be used to build a MAC on fixed- length messages, but
not variable- length messages

(more generally , prefix- free)
(ECBC)

For variable- length messages, we use
"

encrypted Cpsc
"
: standards for banking / financial services
-

[
critical for security↳ variant used in ANSI Xa-9

,
ANSI X19.9 standards (using the same key riot secure)

/ . . . Tmf f apply another PRF with a different key to the output of raw c

-

-
--- - - - .→⑤:

:

I.÷ iei÷fE→o
-

To use encrypted CBC- MAC
, we need to assume message length is even multiple of block size (similar to CBC encryption)

↳ to sign messages that are not a multiple of the block size
,
we need to first pad the message

↳
as was the case with encryption , padding must be injective
↳ in the case of encryption , infectivity needed for correctness

↳ in the case of integrity, infectivity needed for security (if pad(mo) = pad (mi) , mo and m, will have the stage]

Standard approach to pad : append 1000 - r - O to fill up block
[ANSI X9-9 and ANSI X9.19 standards]

- Nate : if message is an even multiple of the block length , need to introduce a dummy block

↳ Necessary for any injective function : 190,15in I > I {oil)
" I

-

This is a bitepadd.gg scheme [PKCS # 7 that we discuss previously in the context of CBC encryption
is a tyIqddy scheme)

Encrypted CBC-MAC drawbacks : always need at least 2 PRF evaluations (using dif# keys) } especially bad for authenticating
messages must be padded to block size short leg. , single-byte) messages

Better approach : raw CBC-MAC secure for prefix- free messages
↳ Can we apply a

"

prefix -free
"

encoding to the message? equal - length messages cannot have one be prefix of other
-

Option: Pretend the message length to the message
✓

different- length messages differ
in first block

Problematic if we do not know message length at the beginning leg, in a streaming setting)
Still requires padding message to multiple of block size)

-

Option: Apply a random secret shift to the last block of the
message

(Xi , Xz , . . .

, Xe) ⇒ (Xi , Xz , . . . , Xe Ot k) where k t X

Adversary that does not know he cannot construct two messages that are prefixes except with

probability 4h11 (by guessing k)

f
> randomized prefix-free encoding

Cipher -based MAC (CMAC) : variant of CBC-MAC standardized by NIST in 2005→ clever technique to avoid extra padding
block

better than encrypted CBC (should be

④ . . 17 [
secret random shift

preferred over ANSI standards)
- Tpart of the MAC key)④ > ← k

,/F¥¥÷#e
" ""

F¥f→
output

avoid collision between anpadded> diffee keys reededmestsoage and padded message

TIFF f- if message is not a multiple of block tending in 100 -- - o

-

length , then pad (ANSI) and Xor with

④ > ← Kz/FIfTFc#
"

"

" "

→
ou,pu,

different secret key Kz / never needs to introduce an

additional block !

key : (K , hi , Kz)
- CMAC standard uses a specific key-derivation function to derive these keys from ene key

