
✓ for NMAC
,
F : K ✗ ✗ → Ko

theorem. Let F : K ✗✗→ ✗ be a secure PRF
.

Let TIECBC be the encrypted CBC MAC formed by F. Then
, for all

MAC adversaries A ,
there exists a PRF adversary B where

y
quadratic dependence on Q

Q2 (l+ 1)
2

/
arises for similar reason as

in analyzing CPA securityMACAdv[A
,
ITECBC] £ 2. PRFADVCB , F) + -1×1

( argue that all inputs to PRF)II. See Boneh- Shoup , chapter 6. are unique

Implication: Block size of PRF is important !
- 3D-1=5 : 1×1=264 ; need to update key after

< 2
"

signing queries
-

AES : 1×1=2128 ; can use key to sign many more messages ( ~ 264 messages)

A parallelizable MAC IPMAC) - general idea :

f-
derived as Flki

,
On) - so key is just k,

II ☒ . .
- ☒ Plk , •) are important - otherwise

, adversary can

Plk, 1)→ Plk,4→ Plk,3) Plk,e)→ / permute the blocks

/ / / f ↳ "mask
"

term is of the form I. • K where

THE TEETHE FIE multiplication is done over GF (2n) where n is

1 the block size (constants Vi carefully chosen for

efficient evaluation)

↳ → tag

can use similar ideas as CMAC (randomized prefix- free encoding) to support messages that is not constant multiple of block size

Parallel structure of PMAC makes it easily updateable (
assuming F is a PRP)

↳
suppose we change block i from m[i] to n' [i] : } PMAC is

"

incremental
"

:

compute F-
' (km-long) ⑦ EÉ¥÷¥k ④ T-lk.gg?i?,.EPlk.iD- can make local updates

without full recomputation

In terms of performance :

-

On sequential machine , PMAC comparable to ECBC, NMAC, CMAC } Best MAC we've seen so far
,
but not used . . .

- On parallel machine, PMAC much better Reasons : patents [not patented anymore
!]

Suminary : Many techniques to build a large-domain PRF from a small - domain one (domain extension for PRF)
↳ Each method ( F- CBC

,
CMAC

, PMAC) gives a MAC on variable-length messages
↳

Many of these designs for their variants) are standardized



So far
,
we have focused on constructing a large- domain PRF from a small-domain PRF in order to construct a MAC

on long messages
↳ Alternative approach :

"

compress
"
the message itself (e.g,

"

hashi the message) and MAC the compressed representation

still require unforgeabiity : two messages should not hash to the same value [otherwise trivial attack : if Hlm ,) -- H (ma) , then

MAC on m , is also MAC on Mz )
↳
eitve : if hash value is shorter than messages, collisions alway exist - so we can only require that they are

hard to find

Definition
.
A hash function H ? M → T is collision - resistant if for efficient adversaries A

,

CRHFADVLA
,4) = Pr ( Cmo , m .) ← A : H (mo) = Hlm .)) = negl .

As stated, definition is problematic : if IMI > ITI , then there always exists a collision mot
,
mi so consider the adversary

that has ME , mi hard coded and outputs ME , m't

↳
Thus, some adversary alway exists (even if we may not be able to write it down explicitly)

↳
Formally , we model the hash function as being parameterized by an additional parameter leg. , a " system parameter

"

or

a
"

key
" ) so adversary cannot output a hard- coded collision

↳
In practice , we have a concrete function leg., SHA -256) that does not include security or system parameters

↳ believed to be hard to find a collision even though there are infinitelyinany (SHA- 256 can take inputs
of arbitrary length)

MACf#lFs : suppose we have the following
- A MAC (sign , verify) with key- space K , message space Mo and tag space T leg, tmho

,
4%3*2
"

)
- A collision- resistant hash function H : M

,
→ Mo

Define S
'

(k , m) = S (K , H (m)) and

V'Ck
,
m
,
t) = VCK

,
Html

,
t)

theorem. Suppose TIMAC = (sign, Verify ) is a secure MAC and H is a CRHF
.

Then
,
Trine is a secure MAC . Specifically,

for every efficient adversary A, there exist efficient adversaries Bio and B, such that

MACAdvCA
,
Trine ] E MACAdr[Bo

,
IMac] t CRHFADVCB, ,H ]



Profile Suppose A manages to produce a valid forgery t on a message me
. Then

,
it must be the case that

- t is a valid MAC on H (m) under TIMAC

- If A queries the signing oracle on m
'
=/ m where Hlm') = H (m)

,
then A breaks collision- resistance of H

- If A never queries signing oracle on m
'

where Hlm' )=H (m)
,
then it has never seen a MAC on Hlm) under

TIMAC . Thus
,
A breaks security of TIMAC

.

[See Boneh-Shoup for formal argument - very
similar to above : just introduce event for collision occurring us . not occurring ]

Constructing above is simple and elegant , but not used in practice
-

Disadvantaged: Implementation requires both a secure MAC and a secure CRHF : more complex , need multiple software/hardware

implementations
-

Disadvantaged : CRHF is a key object and collision- finding is an offline attack (does not need to query verification oracle)

Adversary with substantial preprocessing power can compromise collision- resistance (especially if hash size is small)

Birthdayattackonttts. Suppose we have a hash function H : {0,15 → {0113L
.

How might we find a collision in 4 (without

knowing anything more about H)

Appooactt: compute H (1)
,
H (2), . . . ,

H (21+1) fsize of hash output space
↳
By Pigeonhole Principle, there must be at least one collision - runs in time 0 (Ll)

Approaches : Sample mi
⇐ {915 and compute Hlmi)

. Repeat until collision is found.

How many samples needed to find a collision?

TÉBihdyPa¥ . Take
any
sets where Is/ = n

. Suppose r, , . . - , re
# S

. Then,

Prftitj : ri -- r;] z 1- e-4¥

Pref. Pr[Ii±j:ri= rj]
= 1- Pr [V-i±j : ritrj]
= 1- Pr[rz¢{r , }] -Pir, ¢ {ra.rs] ' - - - - Prfre ¢ {re, , .. . , is]

= 1- ¥ . n÷ . . . .
. n-n#

=/ - Fi ( 1-E)
dominant term when

i= , ✓ automatically holds for ✗ £ - l 1×1<1

l- l -

✗
2 ✗

3

71 - Tle
-Yn

since I -1 ✗ set for all ✗ c- 112 ( ex = It ✗ t -2 1- g-
t - - - )i -- l

l-l

E-in -

= 1- ei" = 1- É€
"

positive for all ✗ > 0

-4¥
= 1 - e

✗
number of people in a room

to have a common birthday
when 171.242

,
Pr[collision] = Pr[Ii=j : ri=rj] > +2 .

[For birthdays , 1.213-65 223]
↳ Birthdays not uniformly distributed , but this only increases collision probability .

[Try proving this
!]

For hash functions with range {0,13? we can use a birthday attack to find collisions in time Ñ = 2% can even do it with

constant space !↳ For 128- bit security (e.g., 2128
)
, we

need the output to be 256- bits (hence SH-A-21.co)

( via Floyd 's cycle finding ]↳ Quantum collision - finding can be done in 2% (cube root attack)
, though requires more space algorithm


