
Collision finding with constant space (assuming function behaves like a random function)
↳ for concrete cryptographic hash functions (SHA -256, SHA -3),
this is a comodelingheuristic (often called the

random oracle model I

suppose f :{0.13
"
→ {0,13

"
is a random function (i.e.

,
each output is distributed uniformly over {0,13

")
To find ✗ =/ y such that ft) = fly) , we can do the following

g-
'" Yod→

•

£
""" ÷ } %"" £

"
"" f

"""
" " "

^^ """""Y ""
d" d"" £"" {°""

f-G) T.fi . ← by birthday bound
,
after 0 (V27) samples , we will have a collision and

Y• flnllz)
• collision sequence

will start to ⇒ T
z Note: after T2' samples,

probability of colliding with
initial element is V27

-

-

neg
!A)

y, find the collision : use Floyd's "He find"J "↳""^ "

common with high probability

1. Initialize Zslow , 2-fast
← 2-

2. Update 2-slow
← f-(2-slow) } Count number of steps taken before so there will be a

2-
fast
← f(f(2-fast)) they match (at input 2-

*)

ksteps
at

•
match

slow pointer
: t.tk stepsµ fast pointer : ttktnc steps where c is cycle

steps length and new

⇒ t.tk/-nc=2(t+k)
⇒ ne = ttk

start at initial point 2- and intersection point 2-
*

, apply f to
each point iteratively until collision point is found :

Let z~= f-4) (z)

|
will succeed

⇒ z*= flttk) (z) = f
""
(E) after -1

iterations
⇒ ft) (z*) = fat" (E) = f

"" (E) = I

T HMAC (most widely used MAC)
So how do we use hash functions to obtain a secure MAC? Will revisit after studying constructions of CRHFS

.

Many cryptographic hash functions (e.g. , MDS, SHA- I , SHA
-256) follow the Merkle-Damgoard paradigm : start from hash function on short

messages and use it to build a collision- resistant hash function on a long message :

I. Split message into blocks

2. Iteratively apply compressional (hash function on short inputs) to message
blocks

1¥ . . . /¥_me h : compression function

to
, . .

- ite : chaining variables

.
→ output

padding introduced so last block is multiple of block

size

↳
must also include an encoding of the message

Hash functions are deterministic
,
so IV is a fixed string length : typically of the form 100 - - - O Hss)

(defined in the specification) - can be taken to be all - zeroes string , where (s> is a fixed-length binary representation
but usually set to a custom value in constructions of message length in blocks

Recall : 100 - - ' O padding was used in the

ANSI standard

if not enough space to include the length, then

for SHA-256 : extra block is added (similar to CBC encryption)
X = {0,13256 = y

Theorem. Suppose h : XXL→ X be a compression function. Let H : Y
th
→ X be the Merkle- Damaged hash function

constructed from h
.
Then

,
if his collision-- resistant

,
H is also collision- resistant.

Prot Suppose we have a collision- finding algorithm A for H. We use A to build a collision- finding algorithm for h :
l
. Run A to obtain a collision M and M

'

(HCM) = HEMI and MFM ')
.

2
.
Let M-

- m
, ma

- - - Mu and M
'
= mimi - - - mi be the blocks of M and M'

, respectively. Let to
, -4, tu and

title - - - ti be the corresponding chaining variables.
3
. Since HLM) = HIM')

,
it must be the case that

HIM) -- hHu- i
,
mu) = htt - i , mi) = HIM')

If either ta-i t ti-c or Mut mi
,
then we have a collision for h .

Otherwise
,
Mu = mi and tu-i -- ti-i . Since Mu and mi include an encoding of the length of M and M! it must

be the case that U -- V
.

Now
,
consider the second- to - last block in the construction (with output tu- I = the-i) :

tu-i = h (tu-z
,
Mu-c) = h(the

,
ma
'

. .) = tie ,
Either we have a collision or tu-z

-

- tu-z and Mu-i
= mi-i . Repeat down the chain until we have collision or

we have concluded that mi = mi
'

for all i
,
and so M-

- M
'

,
which is a contradiction

.

Note: Above constructing
is sequential . Easy to adapt construction (using a tree) to obtain a parallelizable construction .

Sufficient now to construct a

compressionfunction-ypi.catapproach is to use a block cipher.

Davies-Meyer_ : Let F : K ✗ ✗→ ✗ be a block cipher. The Davies - Meyer compression function h : K ✗ ✗→ ✗ is then

Mick

¥⇒→p+→tie× hlkix) : = Flkix) ⑦ ✗
¥-4 Many other variants also possible : hlk, x) = FCK, x) ④ k ④ ✗
-

[used in Whirlpool hash family]
Need to be careful with design !
- hlk

,
✗) = FCK , ✗) is not collision - resistant : h (K , X) : hlk! F-

' (k' , FCK, ✗D)
- h (Kx) = FCK, ×) ④ K is not collision - resistant : h (K, X) = hlk

'

,
F-

' (k
'

,
FCK

,
×) ① k ⑦ k

'))

Theodor. If we model F as an ideal block cipher lie, a truly random permutation for every choice of key), then Davies- Meyer is

collision- resistant.
> birthday attack run-time :

~280

faster)
conclusion : Block cipher + Davies- Meyer + Merkle-Damcjard ⇒ CRHFS January , 2020 : chosen- prefix

collision in → 63.4 time !÷:÷:÷:÷÷:÷÷:÷:E-ampl.es: SHA-1 : SHACAL- I block cipher with Davies- Meyer + Merkle
- Damgoard ← no longer secure [first collision found in 2017 !]

SHA -256 : SHACAL-2 block cipher with Davies - Meyer
+ Merkle- Damgñrd

software updates, PGPIGPG signatures,

Why not use AES ? certificates)→ attacks show need

-

Block size too small ! AES outputs are 128- bits, not 256 bits (so birthday attack finds collision in 264 time) to transition +0
SHA-2 or SHA-3

- Short keys means small number of message bits processed per iteration .
-

Typically, block cipher designed to be fast when using sarge key to encrypt many messages
↳ In Merkle- Damgoird , different keys are used , so alternate design preferred (AES key schedule is expensive)

Recently : SHA-3 family of hash functions standardized (20/5)
↳ Relies on different underlying structure (" sponge

" function)
↳ Both SHA -2 and SHA-3 are believed to be secure (most systems use SHA -2 - typically much faster)

✓ or even better
,
a large -domain PRF

Back to building a secure MAC from a CRHF - can we do it more dinky than using CRHF + small- domain MAC ?

↳ Main difficulty seems to be that CRHFS are keyless-b.at MACS are keyed
idea: include the key as part of the hashed input

By itself , collision - resistance does not provide any
"

randomness
"

guarantees on the output
↳ For instance , if His collision- resistant

,
then H' (m) = Moll - - - 11mn11 Hlm) is also collision - resistant even though H

'
also

teaks the first 10 bits/ blocks of m

↳ Constructing a PRF/MAC from a hash function will require more than just collision resistance

-

Option: Model hash function as an
" ideal hash function

"

that behaves like a fixed tralyrandom function

(modeling heuristic called the random oracle model - will encounter later in this course)
-

Qpti_2 : start with a concrete construction of a CRHF (e.g. , Merkle
-Damgoard or the sponge construction)

and reason about its properties
↳ We will take this approach

Suppose H is a Merkle- Damgaord hash function built from a secure compression function

several
ways to build a keyed function :

1 . Prepend key : FCK , m) : = H (k Ilm)
↳ Insecure due to structure of Merkle- Barnyard : can mount an

"
extension attack:

"

given H (KH m)
,
can compute

Hlkllmllm ') by extending Merkle-Danged chain

2 . Append key : FCK,m) : = Hlm 11k)
↳ Similar to hash- then- MAC construction and vulnerable to same offline attack : adversary finds a collision in the

Merkle- Barnyard prefix and uses that to construct a forgery f
> for SHA-I

, they used PDF files
↳ Structure exploited in SHA-I collision demonstration (can generate arbitrary collisions once prefix matches)

3. Envelope method : FCK, m)
'

- = H (K HMH K) } for reasonable pseudorandomness assumptions on h (e.g, both

4. Two- key nest : F ((ki
,
kz) , m) : = H (ka HH Ck , H m)) F- (k ,m) : = h (K,m) and Falk ,m) i

-

- h (m , k) is a PRF), both

of these constructions are secure PRFS on a variable- size domain

✓
hash-based MAC

HMAC is a PRF /MAC based on the two- key nest (though with correlated keys) :

HMACCK
,
m) : = H (K , H H (ka, m))

where k
,

← k ④ ipad and kz← k to opad
and ipad and opad are fixed strings (specified in the HMAC standard)

I
0×36 repeated %x5C repeated

Sety: Since k , and ka are correlated , need to make stronger assumption on security leg., h remains pseudorandom under a related
attack)

Instantiations : Typically , denoted HMAC- H where H is the hash function

HMAC- SHAI%"
HMAC- SHA256 - one of the most widely- used MAC on the web (used in SSLITLS, IPsec, SSH , and more)

HMACy¥ahi : Recall that under reasonable assumptions , HMAC is a secure PRF

In
many protocols, we need to derive multiple keys from a single master key leg, derived from a password)
↳ To derive multiple independent cryptographic keys, a PRF is a natural primitive :

Keno ← HMAC (kmaster
,

"

eric
")) PRF security says derived keys are computationally indistinguishable from

kmac ← HMAC (kmaster
,

"
mac

") uniform

T
derived keys master

key ttag (just has to be unique)
This approach is used in TLS and IPsec to derive session keys durin session setup
↳ General paradigm is the

"

expand
"

step in hash-based key- derivation (HKDF - RFC 5869)
↳ Consists of two procedures :

-

Extract : derive a master key from entropy
source leg, a user password)

-

Expand: derive sub- keys from the master

key
Both steps rely on HMAC

