Homework 5: Public-Key Cryptography

Due: November 29, 2022 at 11:59pm (Submit on Gradescope)
Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:
https://www.cs.utexas.edu/~dwu4/courses/fa22/static/homework.tex
You must submit your problem set via Gradescope (accessible through Canvas).
Collaboration Policy. You may discuss your general high-level strategy with other students, but you may not share any written documents or code. You should not search online for solutions to these problems. If you do consult external sources, you must cite them in your submission. You must include the names of all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: Collision-Resistant Hashing from RSA [15 points]. Let $N=p q$ be an RSA modulus and take $e \in \mathbb{N}$ to be a prime that is also relatively prime to $\varphi(N)$. Let $u \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_{N}^{*}$, and define the hash function

$$
H_{N, e, u}: \mathbb{Z}_{N}^{*} \times\{0, \ldots, e-1\} \rightarrow \mathbb{Z}_{N}^{*} \quad \text { where } \quad H_{N, e, u}(x, y)=x^{e} u^{y} \in \mathbb{Z}_{N}^{*} .
$$

In this problem, we will show that under the RSA assumption, $H_{N, e, u}$ defined above is collision-resistant. Namely, suppose there is an efficient adversary \mathcal{A} that takes as input (N, e, u) and outputs (x_{1}, y_{1}) $\neq\left(x_{2}, y_{2}\right)$ such that $H_{N, e, u}\left(x_{1}, y_{1}\right)=H_{N, e, u}\left(x_{2}, y_{2}\right)$. We will use \mathcal{A} to construct an efficient adversary \mathcal{B} that takes as input (N, e, u) where $u \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_{N}^{*}$ and outputs x such that $x^{e}=u \in \mathbb{Z}_{N}^{*}$.
(a) Show that using algorithm \mathcal{A} defined above, algorithm \mathcal{B} can efficiently compute $a \in \mathbb{Z}_{N}$ and $b \in \mathbb{Z}$ such that $a^{e}=u^{b}(\bmod N)$ and $0 \neq|b|<e$. Remember to argue why any inverses you compute will exist.
(b) Use the above relation to show how \mathcal{B} can efficiently compute $x \in \mathbb{Z}_{N}$ such that $x^{e}=u$. Note that \mathcal{B} does not know the factorization of N, so \mathcal{B} cannot compute $b^{-1}(\bmod \varphi(N))$. Hint: What is $\operatorname{gcd}(b, e)$?

Problem 2: CCA-Secure Encryption from RSA [35 points]. Recall the public-key encryption scheme from RSA that we introduced in class:

- The public key is (N, e) and the secret key is d where $e d=1 \bmod \varphi(n)$. Here, $N=p q$ is an RSA modulus. Let $H: \mathbb{Z}_{N}^{*} \rightarrow\{0,1\}^{\ell}$ be a hash function which we will model as a random oracle.
- To encrypt a message $m \in\{0,1\}^{\ell}$, sample $x \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_{N}^{*}$ and compute $y \leftarrow x^{e} \bmod N$. The ciphertext is $\mathrm{ct}=(y, H(x) \oplus m)$.
- To decrypt a ciphertext (y, z), compute $x \leftarrow y^{d} \bmod N$ and outputs $m \leftarrow z \oplus H(x)$.

In class, we argued (informally) that this scheme is semantically secure (and thus, CPA-secure) under the RSA assumption and modeling H as a random oracle.
(a) Show that this encryption scheme is not CCA-secure.
(b) Suppose we modify the encryption and decryption algorithms as follows:

- The public key pk $=(N, e)$ and the secret key sk $=d$ is the same as before.
- To encrypt a message $m \in\{0,1\}^{\ell}$, sample $x \stackrel{\mathbb{R}}{\mathbb{Z}_{N}^{*}}$ and compute $y \leftarrow x^{e} \bmod N$. The ciphertext is $c t=\left(y, H(x) \oplus m, H^{\prime}(x, y, m)\right)$, where $H^{\prime}: \mathbb{Z}_{N}^{*} \times \mathbb{Z}_{N}^{*} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\lambda}$ is another hash function which we will also model as a random oracle.
- To decrypt a ciphertext (y, z, t), compute $x \leftarrow y^{d} \bmod N$ and $m \leftarrow z \oplus H(x)$. If $t=H^{\prime}(x, y, m)$, output m. Otherwise output \perp.

Show that this modified scheme is CCA-secure under the RSA assumption and modeling H, H^{\prime} as random oracles. Recall that in the RSA assumption, the adversary is given a challenge (N, e, y), where $N=p q$ is a product of two primes, $\operatorname{gcd}(e, \varphi(N))=1$, and $y \stackrel{\text { R }}{\leftarrow} \mathbb{Z}_{N}^{*}$, and needs to output $x \in \mathbb{Z}_{N}^{*}$ such that $x^{e}=y \bmod N$. Recall also that in the public-key setting, you can assume without loss of generality that the CCA adversary makes a single encryption query (but can make an arbitrary number of decryption queries and random oracle queries).

Problem 3: Proxy Re-Encryption [25 points]. Let \mathbb{G} be a group of prime order p and generator g. Recall the vanilla ElGamal encryption scheme from class: the public key is a pair of group elements $\mathrm{pk}=(\mathrm{g}, \mathrm{h})$ and the secret key is the exponent $\mathrm{sk}=x$ where $h=g^{x}$; an encryption of $m \in \mathbb{G}$ is the pair $\left(g^{r}, h^{r} \cdot m\right)$.

Let ($\mathrm{pk}_{\text {Alice }}, \mathrm{sk}_{\text {Alice }}$) be Alice's ElGamal key-pair and ($\mathrm{pk}_{\mathrm{Bob}}, \mathrm{sk}_{\mathrm{Bob}}$) be Bob's ElGamal key-pair. Both Alice and Bob give their public keys to an email server. When the email server receives mail for Alice encrypted under pk Alice , it forwards it to Alice, and correspondingly with Bob. The mail server does not know $\mathrm{sk}_{\text {Alice }}$ or sk ${ }_{\text {Bob }}$, so it cannot decrypt Alice's or Bob's emails.
(a) Suppose Alice goes on vacation, and she wants to delegate her email responsibilities to Bob. Show that Alice and Bob can compute a "proxy key" sk proxy that allows the mail server to translate a ciphertext ct encrypted under $\mathrm{pk}_{\text {Alice }}$ to a new ciphertext ct' that encrypts the same message under Bob's public key $\mathrm{pk}_{\text {Bob }}$. Moreover, assuming semantic security of the ElGamal encryption scheme, messages encrypted under $\mathrm{pk}_{\text {Alice }}$ should remain semantically secure against the proxy even given knowledge of sk ${ }_{\text {proxy }}$ together with Alice and Bob's public keys. The proxy key can depend on $\mathrm{sk}_{\text {Alice }}$ and $\mathrm{sk}_{\text {Bob }}$.

Prove that your construction satisfies correctness and semantic security (assuming correctness and semantic security of ElGamal encryption). For correctness, you should show that if ct decrypts to m under sk Alice, then the translated ciphertext ct^{\prime} decrypts to m under sk $\mathrm{K}_{\text {Bob }}$. In the semantic security game, you may assume that the adversary is given $p k_{\text {Alice }}, \mathrm{pk}_{\text {Bob }}$, and $s k_{\text {proxy }}$ and is trying to distinguish encryptions of $m_{0} \in \mathbb{G}$ from encryptions of $m_{1} \in \mathbb{G}$ under $\mathrm{p}_{\text {Alice }}$.
(b) To ensure that the mail server is behaving honestly, we require the mail server include a NIZK proof that it is translating the ciphertexts properly. The NIZK proof would be logged and independently audited afterwards. Using Fiat-Shamir, it suffices to construct a Σ-protocol for the "correct" translation procedure from Part (a). Show how to construct this Σ-protocol, and prove completeness, special soundness, and HVZK of your protocol. Recall also that the prover must be efficient in a Σ-protocol. You cannot use a general-purpose zero-knowledge proof for NP languages here.

In this setting, the statement contains the public keys $\mathrm{pk}_{\text {Alice, }}, \mathrm{pk}_{\text {Bob }}$ and the ciphertexts $\mathrm{ct}_{\text {Alice }}, \mathrm{Ct}_{\text {Bob }}$. A statement ($\mathrm{pk}_{\text {Alice }}, \mathrm{pk}_{\text {Bob }}, \mathrm{ct}_{\text {Alice }}, \mathrm{ct}_{\mathrm{Bob}}$) is true if $\mathrm{ct}_{\text {Alice }}$ and $\mathrm{ct}_{\text {Bob }}$ encrypt identical messages under
$\mathrm{pk}_{\text {Alice }}$ and $\mathrm{pk} \mathrm{k}_{\text {Bob }}$, respectively. Note that the proxy does not $\mathrm{know}^{\text {sk }} \mathrm{Alice}$, $\mathrm{sk}_{\mathrm{Bob}}$, or the message. Hint: One approach is to reduce this problem to one we encountered in class. If you do this, you do not have to re-prove all of the required properties.

Problem 4: Time Spent [2 points]. How long did you spend on this problem set? This is for calibration purposes, and the response you provide does not affect your score.

Problem 5: Course Evaluations [3 extra credit points]. Please fill out the course evaluations (https : //go.blueja.io/doymgkhSakq5ds9WjhISUg) and include a screenshot of the final confirmation screen (not the evaluation form itself). This is entirely optional and for extra credit. The curve for the class will be determined before extra credit is incorporated.

Optional Feedback. Please answer the following optional questions to help us design future problem sets. You do not need to answer these questions. However, we do encourage you to provide us feedback on how to improve the course experience.
(a) What was your favorite problem on this problem set? Why?
(b) What was your least favorite problem on this problem set? Why?
(c) Do you have any other feedback for this problem set?
(d) Do you have any other feedback on the course so far?

