
CS 6501: Advanced Topics in Cryptography Spring 2019

Problem Set 3

Due: March 22, 2019 at 5pm (submit via Gradescope) Instructor: David Wu

Instructions: You must typeset your solution in LaTeX using the provided template:

https://www.cs.virginia.edu/dwu4/courses/sp19/static/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
9YD875 to sign up. Note that Gradescope requires that the solution to each problem starts on a new page.

Problem 1: Conceptual Questions [12 points]. For each of the following statements, say whether it is
TRUE or FALSE. Write at most 1-3 sentences to justify your answer.

(a) Suppose the CDH assumption holds in a group G. Then, the discrete log assumption holds in G.

(b) Let G be a group of prime order p and generator g . Suppose there exists an efficient adversary A
that solves the CDH problem in G with non-negligible advantage. Let X ,Y ⊆ Zp such that |X | =
(p +1)/2 = |Y |. Then, there exists an efficient adversary B that solves CDH instances drawn from the
following distribution: {

x
R←−X , y

R←−Y : (g , g x , g y)
}

.

(c) Let G be an elliptic group of prime order p = 2O(λ). Suppose there is an efficient algorithm (i.e., runs
in time poly(λ)) that takes as input two curve points P,Q ∈G and outputs P +Q (the ‘+’ operator here
denotes the “chord-and-tangent” operation on curve points). Then, there is an efficient algorithm
that computes k ·P for any k ∈Zp and P ∈G. We write k ·P to denote P +P +·· ·+P︸ ︷︷ ︸

k times

.

(d) Let E be an elliptic curve over Fp defined by the curve equation y2 = x3 +ax +b, where a,b ∈ Fp . Let
P = (x, y) ∈ F2

p be a point on the elliptic curve. If Alice wants to send the point P to Bob, it suffices that
Alice send up to

⌈
log p

⌉+1 bits. In your answer, you may use the fact that there exists an efficient
algorithm for computing square roots in Fp .

(e) Let G be a group where the DDH assumption is believed to be hard. It is possible that there exists an
efficiently-computable and non-degenerate pairing e : G×G→GT on G.

(f) Let 〈P,V 〉 be an interactive proof system for a language L with a randomized verifier. If 〈P,V 〉
satisfies perfect completeness (i.e., completeness holds with probability 1), and perfect soundness
(i.e., soundness holds with probability 1), then there is an interactive proof system for L with a
deterministic verifier.

Problem 2: Homomorphic Encryption [60 points]. At a high-level, a homomorphic encryption scheme
enables computation on ciphertexts. For instance, in an additively homomorphic encryption scheme
over Zp , there is an efficient public algorithm that takes an encryption ct0 of a message m0 ∈Zp and an
encryption ct1 of a message m1 ∈Zp , and produces an encryption of m0 +m1 ∈Zp . In this problem, we
will explore several properties and constructions of homomorphic encryption schemes.

https://www.cs.virginia.edu/dwu4/courses/sp19/static/homework.tex
https://gradescope.com/

Exponential ElGamal. Consider the following “exponential” variant of ElGamal encryption with plain-
text space Zp .

• KeyGen(1λ): Run (G, p, g) ←GroupGen(1λ) to obtain a description of a group G of prime order p and

generator g . Sample s
R←−Zp and set h ← g s . Output pk= (G, p, g ,h) and sk= s.

• Encrypt(pk,m): On input pk= (G, p, g ,h) and m ∈Zp , sample r
R←−Zp , and output (g r , g mhr).

• Decrypt(pk,sk,ct): On input pk = (G, p, g ,h), sk = s and ct = (x, y), compute and output m such that
g m = y/xs .

Note that because the decryption algorithm requires computing a discrete log, this encryption scheme is
only suitable for encrypting small values in Zp (e.g., 32-bit values). Observe that semantic security of this
construction follows from the DDH assumption in G.

(a) Show that the exponential ElGamal encryption scheme is additively homomorphic over Zp . Namely,
describe an algorithm Add(ct0,ct1) that takes as input two ciphertexts ct0 ← Encrypt(pk,m0) and
ct1 ← Encrypt(pk,m1) and outputs a new ciphertext ct such that Decrypt(sk,ct) = m0 +m1 ∈ Zp .
Prove that your algorithm is correct.

(b) Show that the ElGamal encryption scheme can be refreshed: namely, there exists an efficient algorithm
Refresh such that for (pk,sk) ←KeyGen(1λ) and all ciphertexts ct ∈G2,{

Refresh(pk,ct)
}≡ {

Encrypt(pk,Decrypt(sk,ct))
}

.

You should both describe the Refresh algorithm and prove that it satisfies this property.

From secret-key to public-key homomorphic encryption. Let (KeyGen,Encrypt,Decrypt,Add,Refresh)
be a semantically-secure secret-key additively homomorphic encryption scheme over Zp where p = 2O(λ).
You should assume that this Decrypt algorithm can efficient decrypt encryptions of all messages in Zp

(i.e., this is not the decryption algorithm for the exponential ElGamal algorithm). In the secret-key setting,
KeyGen(1λ) still outputs a public key pk (used for Add and Refresh) and a secret key sk (used for Encrypt
and Decrypt). The Refresh algorithm satisfies the following property:{

Refresh(pk,ct)
} c≈ {

Encrypt(sk,Decrypt(sk,ct)).
}

(c) Use (KeyGen,Encrypt,Decrypt,Add,Refresh) to construct a semantically-secure public-key encryp-
tion scheme (KeyGenPKE,EncryptPKE,DecryptPKE) over Zp . Prove that your scheme is efficient (i.e.,
all algorithms run in time poly(λ)), correct, and semantically secure. In particular, note that p here
can be exponential in the security parameter λ. Note that your resulting public-key encryption
scheme is likely to remain additively homomorphic and support an efficient refreshing algorithm,
but you do not have to show these properties.

Implication: Your solution to this problem shows that secret-key homomorphic encryption (with a
few additional properties) is equivalent to public-key homomorphic encryption. One might wonder
if a similar transformation might be possible starting from a vanilla secret-key encryption to obtain a
public-key encryption scheme. Here, the answer is most likely no: there are “black-box separations”
between vanilla secret-key encryption and public-key encryption (namely, we cannot construct
public-key encryption by using a secret-key encryption scheme as a black box).

Fully homomorphic encryption. The exponential ElGamal encryption scheme described above only
supports additive homomorphism. If an encryption scheme supports arbitrarily many additions and
multiplications, then we refer to it as a fully homomorphic encryption (FHE) scheme. FHE is a very
powerful notion in that it enables arbitrary computation on encrypted data.

(d) Suppose we had a fully homomorphic encryption scheme over Zp (for some p > 2). Give a brief
description of how FHE can be used to perform arbitrary computation on encrypted data. Specifically,
assume that the data can be represented as an n-bit string x ∈ {0,1}n where n = poly(λ) and the
computation is modeled as a polynomial-size Boolean circuit C : {0,1}n → {0,1}. You should describe
how to encrypt the input x and how to homomorphically compute an encryption of C (x) without
knowledge of x. You may assume without loss of generality that the Boolean circuit consists only
of AND gates and NOT gates (since AND and NOT gates are universal). For this problem, you just
need to describe your general approach; no formal argument or proof is needed.

Somewhat homomorphic encryption from pairings. Later on in this course, we will describe how to
construct fully homomorphic encryption. Here, we will explore a pairing-based encryption scheme that
supports arbitrarily many additions and a single multiplication. Homomorphic encryption schemes that
support many additions and a small number of multiplications are often called somewhat homomorphic
encryption schemes.

Our construction will rely on a pairing group G of composite order N = pq , where p, q are distinct primes.
Moreover, we assume that the messages to be encrypted are drawn from a small polynomial-size domain
(as in exponential ElGamal). We describe the construction below:

• KeyGen(1λ): Sample (G,GT , p, q,e, g) ←CompositeGroupGen(1λ) which outputs a cyclic group G of
composite order N = pq , a target group GT of order N , an efficiently-computable pairing e : G×G→
GT and a generator g ∈G. Let gp ← g q and gq ← g p . Sample s

R←−Zq and h ← g s
q . Output the public

key pk= (G,GT , N , g ,h) and the secret key sk= (q, gp).

• Encrypt(pk,m): On input pk= (G,GT , N , g ,h) and m ∈ZN , sample r
R←−ZN and output g mhr .

• Decrypt(pk,sk, z): On input pk= (G,GT , N , g ,h), sk= (q, gp) and z ∈G, compute and output m such
that zq = g m

p .

(e) Show that gq generates a subgroup Gq ⊂G of prime order q . Namely, show that
∣∣〈gq〉

∣∣= q .

(f) Show that the above encryption scheme is correct. You may assume that the message m is small
enough that computing the discrete log in Decrypt is efficient.

(g) We say that the subgroup decision assumption holds with respect to CompositeGroupGen if for
(G,GT , p, q,e, g) ←CompositeGroupGen(1λ), N = pq ,{

r
R←−ZN : (G,GT , N ,e, g , g p , g r)

}
c≈

{
r

R←−ZN : (G,GT , N ,e, g , g p , (g p)r)
}

,

Namely, the subgroup decision assumption says that in a composite-order group, it should be difficult
to distinguish a random group element from a random element of a subgroup. Show that under the
subgroup decision assumption, the above encryption scheme is semantically secure.

(h) Show that the subgroup decision assumption is false if the adversary is also given g q . In other words,
show that there is an efficient adversary that can distinguish the following two distributions:{

r
R←−ZN : (G,GT , N ,e, g , g p , g q , g r)

}
and

{
r

R←−ZN : (G,GT , N ,e, g , g p , g q , (g p)r)
}

,

where (G,GT , p, q,e, g) ← CompositeGroupGen(1λ) and N = pq . Give a brief explanation why your
attack does not apply to the standard subgroup decision assumption (where the adversary is not
given g q).

(i) Show that the above encryption scheme is additively homomorphic.

(j) Given two encryptions ct0 ← Encrypt(pk,m0) and ct1 ← Encrypt(pk,m1), describe a procedure to
compute a new ciphertext ct′ ∈GT that decrypts to the product m0m1 with respect to a new decryp-
tion algorithm Decrypt′. Describe the operation of Decrypt′. Your new algorithm Decrypt′ should
only take in pk, sk, and the “product” ciphertext ct′ ∈GT . You should not make any modifications to
the other algorithms. You may assume that decryption succeeds only if the underlying message is
drawn from a small (i.e., polynomial-size) space.

Problem 3: Time Spent [5 points for answering]. How long did you spend on this problem set? This is
for calibration purposes, and the response you provide will not affect your score.

Optional Feedback [0 points]. Please answer the following optional questions to help us design future
problem sets. You do not need to answer these questions. However, we do encourage you to provide us
feedback on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

